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Abstract—The integrated ground-air-space (GAS) communica-
tions system can enhance post-disaster rescue and management
efforts when traditional networks fail, by navigating unmanned
ground vehicles (UGVs) and unmanned arieal vehicles (UAVs)
to collaboratively collect sufficient data from point-of-interests
(PoIs) in a timely manner. In this paper, we consider the GAS
vehicular crowdsensing (VCS) campaign, where UGVs dispatch
and callback UAVs periodically across multiple stops in the work-
zone, to maximize the total collected amount of data, geographic
fairness while minimizing the energy consumption simultane-
ously. Specifically, we propose an energy-efficient, go-directed
hierarchical multi-agent deep reinforcement learning (MADRL)
method with discrete diffusion models called “gMADRL-VCS”,
to optimize the high-level goal-conditioned navigation policies of
UGVs, and the low-level long-term sensing strategies of UAVs.
Extensive experimental results on two real-world datasets in
Roma, Italy, and Hong Kong SAR, China show that gMADRL-
VCS outperforms baselines in terms of energy efficiency, data
collection ratio, energy consumption, and UAV-UGV cooperation
factor.

Index Terms—Ground-air-space vehicular crowdsensing,
Multi-agent deep reinforcement learning, Diffusion models,
Energy-efficiency.

I. INTRODUCTION

The sixth-generation (6G) communications system is ex-
pected to provide users with increased capacity, faster data
rates, reduced latency, enhanced security, and improved quality
of service [1], where the integrated ground-air-space (GAS)
wireless networks have the appealing characteristics by using
the strong communications and computation capabilities of
unmanned aerial vehicles (UAVs), unmanned ground vehicles
(UGVs) and low earth orbit (LEO) satellites [2].

The integrated GAS system can facilitate various applica-
tions, particularly in disaster response areas where traditional
wireless communications systems may fail. As shown in
Fig. 1, UGVs can serve as the UAV carrier to dispatch them to
collect data from Points of Interest (PoIs, like building damage
assessment and trapped individuals’ living conditions), which
can then transmit to disaster management cloud servers via
low earth orbit satellites to aid post-disaster rescue efforts.
After a certain period, the UAVs return to their corresponding
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Fig. 1: Considered GAS-VCS compaign in the workzone.

UGVs to offload the sensory data. Then, each UGV navigates
to another stop during which it charges the onboard UAVs to
prepare for the next sensing task. In this way, a GAS-enabled
vehicular crowdsensing (VCS) campagin is formed.

The decision-making process in our considered collabora-
tive GAS-VCS problem is complex with three key challenges
identified. First, the uneven data distribution associated with
PoIs data and the complicated topology of the underlying road
networks make it difficult for UGVs to optimally decide when
and where to deploy the carried UAVs for sensing. Second, the
cooperation and interaction between UAVs and UGVs needs
to be carefully addressed by considering multiple optimization
objectives and the exponentially expansion of decision space
as the number of agents grows. Finally, the vast workzone can
be inefficiently explored with the limited number of UAVs and
UGVs pairs, and the collected experience may not bet fully
exploited at the beginning of the model training.

Recently, deep reinforcement learning (DRL) achieves great
success in playing computer games [3], training autonomous
driving policy [4], fine-tuning large language models [5], etc.
Some existing studies have focused on solving the above chal-
lenges through enhancing generic multi-agent DRL (MARL)
models. For example, CQDRL [6] facilitated effective cooper-
ation among agents through a decentralized task assignment al-
gorithm with a learning-based communications channel and a
utility mixing network. Guan et al. in [7] proposed a MADRL
algorithm based on enhanced K-means for UAV trajectory
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design to support emergency communications in disaster areas.
DF-MADDPG [8] jointly optimized the trajectory of UAVs
and UGVs with a common objective and reduced the commu-
nications overhead with a distributed architecture. GARL [9]
considered the topology of road with graph convolutional
MADRL. Although previous works tried to obtain efficient
routing policy for UAVs and UGVs, none of them can solve
all these three challenges together.

In this paper, we explicitly consider a collaborative GAS-
VCS system, where UGVs (serving as the UAV carriers)
are responsible for transporting UAVs along the roads and
charging them, while UAVs are navigated to collect post-
disaster data associated with PoIs. Our goal is to improve
the overall efficiency by increasing the level of cooperation’s
between UAVs and UGVs. To this end, we propose a novel
goal-directed MADRL framework called “gMADRL-VCS” to
learn the route planning policies of UAVs and navigation poli-
cies of UGVs simultaneously. Under this framework, a state-
conditioned discrete diffusion model is proposed to capture
the complex decision process among UGVs considering PoI
distributions and road topology. Our contribution is three-fold:

• We propose a hierarchical MADRL framework with
diffusion models for GAS-VCS, which includes a goal-
directed UGV navigation policy optimization module at
the high-level.

• We propose a multi-window goal relabeling module for
UGVs to encourage energy-efficient workzone explo-
rations by fully exploiting the collected experience.

• We perform extensive experiments on two real-world
datasets in Roma, Italy, and Hong Kong SAR by using
real building and road statistics from the OpenStreetMap.
We find the most appropriate hyperparameters; ablation
study and performance comparisons with four other base-
lines well justify the effectiveness of gMADRL-VCS.

The remainder of this paper is organized as follows. First,
we review the related works in Section II. Then, we present
the system model in Section III. Problem definition and
formulation are given in Section IV. After, we introduce our
proposed method gMADRL-VCS in Section V. Experimental
results on two real-world datasets are presented in Section VI.
Finally, we conclude the paper in Section VII. Important
notations used in this paper are listed in Table. I.

II. RELATED WORK

A. Ground-Air-Space (GAS) Networks

Equipped with space and aerial platforms deployed at vary-
ing altitudes, GAS network features multiple vertical layers
and forms an integrated communications 3D structure [10].
It has several advantages such as an integration of frequency
bands with the aid of wide-ranging spectrum sharing and pro-
viding ubiquitous high-quality connectivity in 6G. However,
there is still much work to be done to fully unlock its potentials
when considering the dynamic environments, heterogeneous
devices and multiple optimization objectives. Cao et al. in [11]
considered an uplink ground-space communications system,
where GAS links were proposed to complement ground-to-
satellite links to strengthen the terrestrial communications

TABLE I: Important notations used in this paper.

Notation Explanation

t, T Current timeslot and total timeslots in a task.
τ UAV one-time sensing period.

U , u, U UGVs set, index and total number of UGVs.
V, v, V UAVs set, index and total number of UAVs.
V(u) A set of UAVs that are carried by a UGV u.
P, p, P PoIs set, index and total number of PoIs.
B,B′ UGV stop set, the selected UGV stops.
µp,ut The approximate data transmission rate.

ξ, η, f, ψ Energy efficiency, data collection ratio, geographic fairness,
and UAV-UGV cooperation factor.

ĝ, gt Expected goal, achieved goal.

and save the transmission power. The authors in [12], [13]
considered the mm-wave links as the air-to-air and air-to-
ground backbones to facilitate a high-capacity yet low-cost
GAS architecture. In the integrated GAS system, LEO satel-
lites play a crucial role in transmitting UAV-collected data
to the data management servers. In this work, we focus
on the efficient data collection in post-disaster scenarios,
addressing challenges from ground and air layers. After data
collection, various techniques, such as adaptive transmission
schemes [14], coding-based multi-path transmission [15], and
cooperative HAP and LEO satellite schemes [16] can be
utilized to facilitate ground-to-space data transmissions.

Other works focused on resource management issues in
GAS networks, such as energy efficiency of UAVs/UGVs [11],
[17], spectrum utilization [11], [18] and low latency [19]. In
this paper, we aim to optimize the energy efficiency of UAVs
while maximizing the data collection ratio and minimizing the
energy consumption simultaneously in a limited task duration.

B. Vehicular Crowdsensing (VCS)

VCS uses UAVs and UGVs to offer widespread sens-
ing services for extreme situations like post-disaster rescue
and management [20], [21]. Xu et al. in [6] proposed a
communication-QMIX MADRL solution to solve the task
assignment problem in a decentralized manner, to take ad-
vantage of redundant computing and network resources of
worker devices, thereby reducing the deployment cost. Guan
et al. in [7] proposed a decentralized K-means enhanced IPPO
algorithm to optimize the cooperative trajectory of UAVs in
disaster response. However, it did not take the limited energy
resources of UAVs into consideration, which is a practical
challenge. In [8], they proposed an F-MADDPG based UAV
and UGV joint trajectory optimization algorithm to maximize
the average spectral efficiency of the emergency network.
In order to deploy the UGVs in urban area, Wang et al.
in [9] proposed a graph convolutional network approach to
extract UGV-specific features from stops and facilitate their
cooperation to adapt to the changing geometry. All these works
cannot be directly leveraged to solve our considered GAS-
VCS problem, thus we aim to design a heterogeneous MADRL
algorithm to deal with the large action space and can utilize
the mobility of UGVs to transport UAVs between different
regions.
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C. DRL and Generative Models
DRL aims at learning a state-action map function towards

maximizing the accumulated reward. It provides an ideal
framework for learning long-term routing policies for UAVs
and UGVs in GAS-VCS without depending on human super-
vision. However, the commonly used Gaussian or Categorical
kernel for policy distributions and simple multi-layer percep-
tion architecture, may not effectively represent complex, goal-
conditioned multi-agent policies for UGVs. These standard
DRL setups often fail to capture the intricate dynamics and
strategic interactions required in multi-agent environments.

Meanwhile, diffusion models [22]–[24] are emerging as
a state-of-the-art (SOTA) family of generative models, con-
tributing to their stable training process and strong multi-
modal representation ability. They can be utilized to rep-
resent complex multi-modal policies and optimized through
DRL. For example, Diffusion-QL [25] used a conditional
diffusion model to learn the multi-modal policy for robot
control with the aid of behavior cloning and Q function
estimation. However, it is only compatible with value-based
DRL, as the likelihood of diffusion models is intractable.
EDP [26] approximated the diffusion policy likelihood from a
constructed Gaussian distribution and compatible with various
offline DRL methods. However, these works cannot be directly
integrated with online DRL methods, since obtaining offline
datasets is challenging in our GAS-VCS scenarios. In one
concurrent work, Du et al. in [27] introduced a diffusion
model-based approach called AGOD for generating optimal
AI service provider selection decisions. However, it ignored
the sparsity nature in large discrete action space. In this paper,
we considered to use a more structured categorical corruption
process to better represent the navigation policy of UGVs and
optimized the decision policies with efficient online MADRL
algorithms.

Unlike previous studies mainly focusing either on effi-
cient policies for UAVs or UGVs separately [6], [7] or on
complex combined objectives [9], this paper aims to opti-
mize the cooperative long-term goals of UAVs and UGVs
for enhanced GAS. Specifically, we introduce a hierarchical
MADRL framework that simplifies the joint optimization
challenge into a two-level learning process. While previous
efforts overlooked road topologies [8], we propose a state-
based discrete-diffusion model to better represent the complex
routing strategies of UGVs in urban environments. This model
utilizes the gradual denoising process and benefits from the
inherently flexible conditioning and stable training character-
istics of diffusion models. Given the limited amount of training
samples at the higher level of our hierarchical framework,
on-policy algorithms like TRPO [28] and PPO [29] are not
practical due to requirements of large number of samples.
Therefore, we propose integrating a multi-window goal re-
labeling module in our framework to augment the training
samples and optimized through off-policy MASAC algorithm
to promote energy-efficient exploration in work zones.

III. SYSTEM MODEL

We consider an integrated GAS-VCS task where multiple
UAVs denoted as V ≜ {1, · · · , V } and multiple UGVs

denoted as U ≜ {1, · · · , U} are deployed in a targeted
workzone. UGVs move along the road and UAVs fly in a
2D cartesian coordinate system at a fixed height. Buildings
higher than the UAV surveillance altitude are considered as
obstacles. Similar to [30], we consider an urban environment
where one single omni-directional antenna is mounted on the
top of each building. These antennas gather data from sensors
hanging in/outside the building and then transmit the data to
UAVs. These antennas are referred to as Point-of-Interests
(PoIs), denoted as P ≜ {1, · · · , P}. UGVs are responsible
for transporting UAVs between remote regions and charging
battery for them. UAVs, equipped with multiple antennas,
are responsible for data collections from PoIs and offloading
these data to UGVs upon landing. We denote the association
between UGVs and UAVs as V(u), representing the set of
UAVs carried by UGV u.

A. GAS Communication Model

We model the ground-to-air data transmission links from
PoIs to UAVs as follows. Since UAVs fly through buildings,
it is crucial to incorporate both the line-of-sight (LoS) and
the non-line-of-sight (NLoS) links into the channel model.
Following [31], [32], the path loss for the large-scale fading
of the ground-to-air channel from a PoI p to a UAV v at time
t can be expressed as:

lt[p, v] = 20 log (dp,vt ) + (ηLoS − ηNLoS) p
LoS
t [p, v]

+ ηNLoS + 20 log

(
4πfc
c

)
,

(1)

where dp,vt denotes the spatial distance between
a PoI p and a UAV v that is calculated by

dp,vt =

√
(xp − xvt )

2
+ (yp − yvt )

2
+ (zp − zvt )

2, where
(xp, yp, zp), (xvt , y

v
t , z

v
t ) represents the location of the

PoI and UAV, respectively. Let ηLoS and ηNLoS be the
additional transmission loss for LoS and NLoS links,
respectively. fc is the carrier frequency. Let pLoS

t [p, v]
be the LoS connectivity probability between a UAV v
and a PoI p at timeslot t, which could be expressed by
pLoS
t [p, v] = [1 + a exp(−b× (θp,vt − a))]

−1, where a and b
are environment constants affecting the S-curve parameters
that vary according to the building-density of the environment.
θp,vt is the elevation angle between a UAV v and a PoI p
at timeslot t. Then, we can get the complex channel gain
ht[p, v] as:

ht[p, v] = 10−lt[p,v]/10ϑt[p, v], (2)

where ϑt[p, v] denotes the small-scale channel fading. We
apply the F -factor Rician fading with E∥ ϑt[p, v] ∥2 = 1 to
consider both LoS and NLoS links in data transmission.

Next, we assume that each UAV is equipped with M
antennas to receive data from at most M PoIs. To guarantee
transmission reliability, a UAV only receives data from PoIs
with channel gains higher than a predefined threshold βth. A
UAV v receives data from a set of PoIs Pv

t simultaneously,
where:

Pv
t = {p ∈ P|ht[p, v] ≤ hth}. (3)
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To eliminate the interference, we employ linear beamform-
ing [33] from PoIs to a UAV and zero-forcing [34] techniques.
Specifically, we consider Wv

t = Hv
t [(H

v
t )

H
Hv

t ]
−1

, where Wv
t

denotes the beamforming matrix [wu,Pv
t (1)t

, · · · , wu,Pv
t (M)t

]
and Hv

t represents the corresponding channel matrix between
a UAV u and the selected PoIs for sensing; Hv

t has the same
shape M × Pv

t with Wv
t . Then, we are able to compute the

received signal-to-noise ratio (SNR) from a PoI p to a UAV u

as ρ0∥(wp,v
t )HHv

t (p)∥
2

N0
, where ρ0 denotes the average transmitted

power of each PoI and N0 denotes the power of the white
Gaussian noise at each UAV. Following [35], we approximate
the data rate µp,v

t by applying the Wishart matrix [33] and
Jensen’s inequality [36] as:

µp,v
t =W log

(
1 +

ρ0∥(wp,v
t )

H
Hv

t (p)∥
2

N0

)

≥W log

(
1 +

ρ0

E{[((Hv
t )

H
Hv

t )
−1]p,p}N0

)

=W log

(
1 +

ρ010
−lt[p,v]/10

N0

M−|Pv
t |

)

=W log

(
1 +

(M − |Pv
t |)ρ010−lt[p,v]/10

N0

)
,

(4)

where W is the total bandwidth of the channel; Following [35],
we use the classical Maximum-Ratio Combining beamform-
ing [37] when only one beam of transmitted data arrives at a
UAV, i.e., |Pv

t | = 1. We have:

µp,v
t ≜W log

(
1 +

Ωv
t ρ010

−lt[p,v]/10

N0

)
,∀p ∈ Pv

t , v ∈ V,
(5)

where Ωv
t =M − |Pv

t | if |Pv
t | ≥ 2, else Ωv

t = 1.
The energy consumption of UAV v at time t, denoted as δevt ,

includes energy used for movement during data collection and
for ascending and descending during the recharge phase. We
define this as follows:

B. UAV Energy Consumpition Model

The energy consumption of UAVs results from horizontal
movement during data collection and from ascending and de-
scending during the recharge phase. We formulate the energy
consumption ev−t of UAV v at time t as follows:

ev−t = C1||(xt, yt, zt)− (xt−1, yt1 , zt−1)||+ C2 (6)

where C1, C2 are constants that depend on the aircraft weight,
air density and rotor disc area, as specified in [38]. After
recharging, the UAV resumes data collection from its initial
location.

IV. PROBLEM DEFINITION AND FORMULATION

A. Problem Definition

In our considered GAS-VCS scenario, UAVs and UGVs
work together to collect sensory data in the target work zone
and transmit these data back to the LEO satellite to maximize

the following performance metrics. First is the data collection
ratio η, defined as:

η = 1−
∑

p d
p
T∑

dp0
, (7)

where
∑

p d
p
T is the total amount of data after T timeslots,

and
∑

p d
p
0 denotes the initial data amount of all PoIs.

Second is the geographic fairness of collected data, since
PoIs may unevenly distributed in the workzone, therefore some
far away PoIs may not covered. We use Jain’s fairness index
[39] to compute it as:

f =

(∑
p(d

p
0 − dpT )/d

p
0

)2
P
∑

p ((d
p
0 − dpT )/d

p
0)

2 . (8)

Next, in order to measure the efficiency of all UAVs to
execute the data collection task, we jointly consider data
collection ratio and geographic fairness, adding the element
of energy consumption, as an integrated performance index,
called “energy efficiency”, as:

ξ = η · f ·
∑

v (e
v
0 +∆evt )∑

v (e
v
0 +∆evt − evT )

, (9)

where ev0 denotes the initial energy reserve of UAV v and evT
denotes the remaining energy after T timeslots; ∆evt denotes
the total amount of energy charged up to timeslot t.

Fourth is the UAV-UGV cooperation factor ψ, representing
their degree of collaboration as whether or not a UGV is able
to transport some UAVs to those areas to receive higher energy
efficiency. We first define the total amount of data collected
by a UAV v up to timeslot t as:

∆dvt =

T∑
t=1

∑
p∈Pv

t

µp,v
t δ. (10)

Here µp,v
t represents the data transmission rate, as in Eqn. (5);

δ denotes the length of one timeslot; Pv
t refers to the set

of PoIs with satisfactory quality-of-service (QoS) around v,
as in Eqn. (3). We then define the cooperation factor as the
bottleneck attained energy efficiency of all UGVs as:

ψ = min
u∈U

∑
v∈V(u) ∆d

v
t

|V(u)| ·
∑

t κ
u
t

, (11)

where V(u) refers to the set of UAVs carried by a UGV u,
and |V(u)| specifies the number of UAVs in this set;

∑
t κ

u
t

denotes the cumulative distance traveled by a UGV u upon
the task completion.

B. Problem Formulation

The decision process of UGVs and UAVs is modeled as
a decentralized partially observable Markov Decision Process
(Dec-POMDP). We formulate it as a two-step framework. At
first step, each UGV selects a stop to navigate to. Then, UAVs
execute route-planning policies for data collections.

For UGVs, their decision process is represented by a tuple
< U ,G,S,B,R >, where G,S,B,R denote the goal, state,
action space and the reward function, respectively. At each
timeslot t, after all UGVs take actions, they obtain a common
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achieved goal gt, defined as the total amount of data from
PoIs in the neighborhood of a UGV stop b, as:

gt =

 ∑
∀p∈n(b)

dpt

∣∣∣b ∈ B

 , (12)

where n(b) denotes a set of PoIs in the neighbourhood around
the UGV stop b, defined as:

n(b) =
{
p
∣∣µp,b

0 ≥ µth,∀p ∈ P
}
,∀b ∈ B. (13)

Let µp,b
0 be the data transmission rate from a PoI p to a

UAV when it is located at (xb, yb, zv), where (xb, yb) is the
coordinates of the stop b; and µth is the predefined threshold
that guaranteed the QoS. Similarly, let ĝ denote the expected
total amount of data around all UGV stops, as ĝ = g0

⊙
ϵ,

where ϵ is a random variable vector sampled from the normal
distribution, and

⊙
denotes the element-wise multiplication.

Next, we give the formulation of state sut for each UGV u at
timeslot t. It comprises a common and a private observation.
The former is the same for every UGV which includes the
achieved goal gt, the location of each UGV at timeslot t, and
the minimal distance between UGV stops. The latter is a one-
hot index vector to uniquely identify a UGV.

The action for each UGV is denoted by but , which represents
the stop it needs to be navigated to. Therefore, the action space
is equal to the stop space B.

Finally, the reward function for UGVs is defined as the
distance between the expected goal and the achieved goal as:

rut =

(
1− ||gt − ĝ||

||g0||

)
·
∑

v∈V(u)

(
∆dvt −∆dvt−τ

)
|V(u)| · κut

,∀u ∈ U .
(14)

Here ∆dvt − ∆dvt−τ represents the total amount of data
collected by a UAV v during its one-time sensing period τ ; κut
denotes the navigation distance for the UGV u at timeslot t.
The reward rut encourages UGVs to travel to densely located
PoIs that have high amount of remaining data, using the
shortest path, aiming to achieve the predefined goal ĝt.

For UAVs, we formulate their decision process as a tuple
< V,S,O,A,Pr >, where V,S,O,A are the set of UAVs,
global states, local observations, and actions. Following [9],
we model the global states as a matrix with four channels.
Specifically, the first channel incorporates the location infor-
mation of obstacles; the second channel includes the remaining
data dpt for PoIs p ∈ P at timeslot t; the third channel is the
remaining energy evt for each UAV v ∈ V; and the last channel
shows the location information of UGVs. Since UAVs are not
able to access the global states and hence they only make
decisions based on their local observations. Specifically, we
first model the masked state for a UAV v through masking
out PoIs which do not be assigned to a UAV v, in the second
channel of global states. A UAV v is assigned to sense a PoI p
when its carrier UGV is located at the stop b and p ∈ n(b), as
in Eqn. (13). Then, the local observation ov

t can be obtained
by cropping the masked state matrix around the position of a
UAV v within a range, using the UAV’s position as the origin.

The action space for UAVs is continuous and consists of
the expected locations for sensing. The reward rvt for a UAV
v is defined as rvt = rv+t + rv−t , where:

rv+t = f(n(b)) ·
∆dvt −∆dvt−1

evt−1 − evt
, ∀v ∈ V, t, (15)

where f(n(b)) denotes the geographic fairness over the PoI
set n(b); rv−t is the penalty incurred when UAV v collides
with an obstacle.

Our considered GAS-VCS can be modeled as a constrained
optimization problem that aims to jointly optimize the policies
of UAVs and UGVs, with the goal of maximizing energy
efficiency and the cooperation factor. Obviously, it is a NP-
hard problem that is challenging to solve considering the vast
continuous observation space, the joint behaviour of UAVs and
UGVs, and the necessity for long-term sequential decision-
making. Therefore, we opt to propose a sub-optimal solution
using MADRL methods as follows.

V. PROPOSED SOLUTION: gMADRL-VCS

We propose an energy-efficient hierarchical MADRL algo-
rithm with diffusion models to jointly optimize the navigation
and route planning policies of UGVs and UAVs simultane-
ously, as shown in Fig. 2.

A. Channel-Aware UGV Stop Selection

Typically, the set of stops B is too large to solve in a vast
workzone. Therefore, we need first to select a subset B′ from
it. Considering the uneven distribution of PoIs, we partition
the entire workzone into regions by solving a channel-aware
minimal set coverage problem. Each region consists of one
single UGV stop along with multiple PoIs.

Recall that we define a set of PoIs that guarantee the QoS
µth as n(b) around the stop b, in Eqn. (13). Then, the UGV
stop selection problem can be converted to the well-known set
covering problem (SCP) aiming to find the minimum number
of sets (stops) that cover all elements (PoIs):

Minimize: |B′| (16)

subject to:
⋃
b∈B′

n(b) = P, ∀b ∈ B. (17)

SCP is a classic NP-hard problem in combinatorial optimiza-
tion. It can be approximated via linear programming relaxation
algorithms or greedy algorithms [40] in polynomial solvable
time.

B. Goal-conditioned UGV Policy Optimization by Discrete
Diffusion Models

1) Goal-conditioned discrete diffusion model: Inspired by
the great success of diffusion models in text-to-image tasks,
we propose a goal-conditioned diffusion models as UGV
policy generator, and then extend the existing single-agent
DRL approach SAC [41] to its multi-age version, called
“MASAC”. We start from D3PM [42], as a discrete diffusion
model designed for image reconstruction. Consider our GAS-
VCS scenario where each UGV u selects one stop but from
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Fig. 2: Proposed solution: gMADRL-VCS.

B′ and navigates to it. The total number of UGV stops
considered in our method is represented by |B′|. Rather than
using Gaussian kernel, we consider adding uniform noise
during the forward process in our goal-conditioned discrete
diffusion model. Specifically, in the forward process, we define
a discrete transition matrix [Ml]i,j = q(bl = j|bl−1 = i),
representing the transition probability from bl−1 = i to bl = j
at denoising step l. The shape of M is |B′| × |B′|. We adopt
the uniform distribution as the transition kernel that gradually
added to the forward process. Then, the transition matrix can
be written as Ml = (1− βl)I + βl11

T /|B′|, where 1 denotes
the column vector of all ones and βl controls the ratio between
dumping to a new stop and remaining at the current stop.

We denote ḃ as the one-hot row vector of b. Then the
forward transition probability is given by:

q(ḃl|ḃl−1) = cat
(
ḃl;p = ḃl−1Ml

)
, (18)

where cat
(
ḃ;p
)

denotes the categorical distribution over the

one-hot vector ḃ with probabilities given by the row vector p ,
and ḃl−1Ml can be understood as the j-th row vector taken
from Ml when bl−1 = j. Starting from the stop ḃ0 at denoising
step l = 0, the l-step marginal distribution in the forward
process of diffusion can be computed as:

q(ḃl|ḃ0) = cat
(
ḃl;p = ḃl−1Ml

)
, (19)

with Ml = MlMl−1 · · ·M1. Note that when L → ∞, q(ḃL)
approximates a uniform distribution over the action space B′.
Then, the posterior at denoising step l − 1 with the forward
transition probability q is given by:

Pr(ḃl−1|ḃl, ḃ0) =
q(ḃl|ḃl−1, ḃ0)q(ḃl−1|ḃ0)

q(ḃl|ḃ0)

= cat

(
ḃl−1;p =

ḃlM
T
t

⊙
ḃ0Ml−1

ḃ0M̄lḃTl

)
.

(20)

The reverse diffusion process using the posterior can be
expressed as:

Pr(ḃl−1|ḃl) =
∑

ḃ0
Pr(ḃl−1, ḃl, ḃ0)

Pr(ḃl)

=
∑
ḃ0

Pr(ḃl−1|ḃl, ḃ0)Pr(ḃ0|ḃl) = EPr(ḃ0|ḃl)Pr(ḃl−1|ḃl, ḃ0).

(21)

In practice, we approximate the categorical distribution
Pr(ḃ0|ḃl) by deep neural networks with parameters θ. After
every sensing period at a timeslot, we sample the UGV u’s
action from the diffusion model πθ with L denoising steps:
but ∼ πθ(ḃ0|ḃL, ĝ, sut ).

2) UGV policy optimization by MASAC in centralized train-
ing decentralized execution (CTDE) manner: In the central-
ized training phase of MASAC, we compute the value of the
policy towards the maximum entropy objective. Specifically,
the soft Q value network Qω(s

u
t , ĝ, b

u
t ) predicts the expected

discounted returns obtained at timeslot t. It is optimized
through minimizing the Bellman equation error as:

Lω = E
[
||rut + γV (sut+1, ĝ)−Qω(s

u
t , ĝ, b

u
t )||
]
, (22)

where the soft state value function is:

V (sut , ĝ) = Ebut ∼πθ
[Qω(s

u
t , ĝ, b

u
t )− α log πθ(b

u
t |sut , ĝ)] .

(23)
The, the policy is updated towards the exponential of the

soft Q-function, as:

π′ = argmin
π
DKL

(
π(·|sut )∥

exp( 1
αQ

πold(sut , ĝ, ·))
Zπold(su

t ,ĝ)

)
,

(24)
where the Kullback-Leibler divergence is chosen to measure
the distance between the policy π and the soft Q-function Q.
The partition function Zπold(s

u
t ) normalizes the distribution

and can be ignored in the policy updating process. Then,
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the parameters in diffusion models can be optimized by
minimizing the following objective:

Lθ = E(st,ĝ)∼DU
[Ebt∼πθ

[α log(πθ(bt|st, ĝ))−Qω(st, ĝ, bt)]] .
(25)

C. Decentralized Sensing Policy Optimization for UAVs

Following the UGV decisions, UAVs are dispatched to
different regions to collect data from PoIs within a limited time
duration τ . UAV policies are optimized in a CTDE way, as
they share the training samples with a common rollout storage.
For simplicity, we omit the subscript v and simply denote as
ot, at and rt.

Following the backbone of IPPO [43], one policy network
πσ and one value network Vϕ are used, whose objective
function is defined as:

Lσ = E
[
min(rt(σ)Ât, clip(rt(σ), 1− ϵ, 1 + ϵ)Ât)

]
, (26)

where rt(σ) is denoted as the important sampling ratio to
measure the action distribution distance between the old and
current policy, which is computed as rt(σ) = πσ(at|ot)

πσold
(at|ot)

.

The advantage function Ât is calculated via the generalized
advantage estimation approach [44]. The clip function is used
to limit the range of the policy ratio, preventing excessive
updates to the policy. Specifically, if rt(σ) falls outside the
range of [1− ϵ, 1+ ϵ], it gets clipped to stay within this range.

The value network Vϕ is updated by:

Lϕ = E
[
max

(
(Vϕ(st)− R̂t)

2
,

(clip(Vϕ(st), Vϕold
(st)− ϵ1, Vϕold

(st) + ϵ1)− R̂t)
2)]

,
(27)

where R̂t denotes the discounted returns, Vϕold
denotes the

estimated value of previous models during inference.

D. Algorithm Description

Pseudo-codes of gMADRL-VCS are shown in Algorithm 1,
which can be decomposed into three phases: preparation,
exploration and exploitation, while the two proceed in alter-
nation. The inputs are total number of UGVs, UAVs and UAV
one-time sensing period τ (Line 1). The outputs are UGV
policy model πθ and UAV policy model πσ (Line 2). First, we
specify the 3-D coordinates, PoIs P , UGV stops B, building
outlines as obstacles, and the road network topology for UGV
navigation (Line 3). During preparation (Line 4-6), we split the
workzone into regions and formulate the goal and the action
space for UGVs. Specifically, we first obtain the selected UGV
stops B′ through solving a channel-aware SCP in Eqn. (16)
(Line 4). For every UGV stop b ∈ B′, it corresponds to a
region of several PoIs. Then, we formulate the initial goal g0
defined in Eqn. (12) and we constraint the action space for
UGVs to B′ (Line 5). After, we initialize the parameters of
πθ, Qω for UGVs, πσ, Vϕ for UAVs (Line 6), and replay buffer
DU ,DV as empty (Line 7). During each episode h, we first
empty the rollout replay DV , then set the expected goal value
ĝ with randomly variable ϵ0 from Gaussian distribution.

During exploration, for each UGV u, it first obtains
the actions by sampling from the discrete diffusion model

Algorithm 1: gMADRL-VCS

1 Input: No. of UGVs, no. of UAVs, UAV one-time
sensing period τ ;

2 Outout: UGV policy πθ, UAV policy πσ;
3 Data: The location statistics of PoIs P , all UGV stops

B′, obstacles, and roads;
/* Preparation */

4 Obtain selected UGV stops B′ by solving SCP in
Eqn. (16);

5 Construct the initial goal g0 according to Eqn. (12);
6 Initialize πθ, Qω for UGVs, πσ , Vϕ for UAVs;
7 Initialize UGV replay buffer DU = ∅, UAV rollout

storage DV = ∅;
8 for h = 1, 2, ...H do
9 Set DV = ∅, t = 0, k = 0;

10 Set goal ĝ = g0
⊙

ϵ0;
/* Exploration */

11 while t < T do
12 UGVs execute actions buk ∼ πθ(ḃ0|ḃL, ĝ, suk);
13 while iter < min(τ, T − t) do
14 UAVs execute actions av

t ∼ πσ(·|ov
t );

15 Store (ov
t , av

t , rvt ) into DV for all v ∈ V;
16 t = t+ 1;

17 Store (suk , buk , ruk , suk+1, ĝ, gk) into DU for all
u ∈ U ;

18 k = k + 1;

19 Augment DU as in Algorithm 2;
/* Exploitation */

20 πσold
= πσ , Vϕold

=Vϕ;
21 for 1, 2, ..Kv do
22 Update πσ by minimizing Eqn. (26);
23 Update Vϕ by minimizing Eqn. (27);

24 for 1, 2, ..Ku do
25 Update πθ by minimizing Eqn. (25);
26 Update Qω by minimizing Eqn. (22);

πθ(ḃ0|ḃL, ĝ, sut ) given its state sut and expected goal ĝ. Then
the UGVs navigate to their stops along the shortest path
and dispatch their carried UAVs at the stop. After, UAVs
perform the sensing tasks within min(τ, T − t) timeslots. At
each timeslot t, each UAV v independently samples actions
av
t ∼ πσ(·|ov

t ). Then, they store their experiences (ov
t , av

t , rvt )
into a common rollout storage DV . After a period of τ , UGVs
callback UAVs and compute the achieved goal gt according
to Eqn. (12). Then, UGVs store their experiences (suk , buk , ruk ,
suk+1, ĝ, gt) into a common replay buffer DU (Line 17). Next,
UGVs take actions again until task completion.

After exploration, we first perform goal-relabeling in DU

(Line 19). Specifically, we propose a multi-window goal
relabeling method for augmenting the trajectory experience
of UGVs, as shown in Algorithm 2. For each UGV u and its
corresponding trajectory, we uniformly sample an index i from
the next index k+1 to the last data sample index K. Then, we
replace the expected goal for k-th experience with the achieved
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Algorithm 2: Multi-window goal relabeling

1 Input: Latest experience trajectories for UGVs;
2 Outout: Augmented experience trajectories;
3 Denote the length of the trajectory as K = ⌈T/τ⌉;
4 for u = 1, 2, ...U do
5 for k = 1, 2, ...K − 1 do
6 Uniformly sample i ∈ [k + 1,K];
7 Replace ĝ with gi;
8 Compute reward r′ in Eqn. (14);
9 Insert

(
suk , b

u
k , r

′, suk+1, gi, gk
)

into DU .

goal gi. After, we recompute the reward r′ with Eqn. (14)
using gi and gk. Next, we insert the updated experience into
the UGV buffer DU . Then we return to Algorithm 1 to update
UGV and UAV policy models, using the experiences in DU

and DV , respectively (Line 21-26).

E. Complexity Analysis

1) Model Inference: During inference, for UAVs, we adopt
convolution neural networks to extract features from the high-
dimensional inputs and then feed the features into a MLP net-
work as the policy. Therefore, the computational complexity
for UAVs can be represented as:

O
( HL∑

i=1

D1,i ·D2,i +

HC∑
i=1

D2
3,i ·D2

4,i ·D5,i ·D6,i︸ ︷︷ ︸
ouav

)
, (28)

where HL is the number of linear layers in the policy network
for UAVs and, D1,i, D2,i represent the dimension of input
and output features of i-th linear layers. HC is the number of
convolution layers, D3,i, D4,i, D5,i, D6,i represent the size
of output feature maps, convolution kernels, input channels,
output channels of the i-th convolution layer, respectively.

The computation complexity for UGV policy networks is
similar since they both utilize MLPs. However, due to the
additional L denoising step in the reverse diffusion process,
the computation complexity for UGV network is increased to:

O
(
(L− 1)

HU∑
i=1

D1,i ·D2,i︸ ︷︷ ︸
ougv

)
, (29)

where HU is the number of linear layers in the diffusion model
for UGVs.

2) Model Training of Algorithm 1: The time complexity is
given by O(H(Touav + ⌈T/τ⌉)ougv), where H denotes the
training iterations, T denotes episode length. For Algorithm. 2,
the time complexity is given by O(U(K − 1)), where U
denotes the number of UGVs and K denotes the length of
the UGV trajectories.

VI. EXPERIMENTAL RESULTS

A. Setup

We use two real-world urban datasets in Roma, Italy, and
Hong Kong SAR. The landscape data, including the roads

TABLE II: Simulation settings

Notation Value Notation Value Notation Value

a, b 9.6,0.16 fc 3.5GHz zv 5m
T 100 W 20MHz δ 20s

ηLoS, ηNLoS 1dB,20dB M 8 ρ0 20dBm

TABLE III: Impact of µth

Dataset µth ξ η f ψ

1.5 0.129 0.305 0.329 4.065
2.0 0.300 0.420 0.436 5.490

Roma 2.5 0.926 0.722 0.745 7.820
3.0 0.777 0.673 0.710 7.014
3.5 0.645 0.598 0.628 3.691

2.0 0.315 0.358 0.380 5.649
2.5 0.948 0.718 0.738 6.949

HKSAR 3.0 1.342 0.830 0.866 8.689
3.5 0.834 0.745 0.776 8.211
4.0 0.741 0.617 0.654 7.203

and buildings, were obtained from OpenStreetMap, and then
pre-processed including eliminating low-level buildings that
do not pose as obstacles for UAVs, distributing UGV stops
evenly along roads, and outlining boundaries on the map. The
UAVs fly at a fixed height of 10 meters. The height of PoIs
matches the height of the buildings on which they are mounted.
According to the ITU-R Rec. P.1410-2 model [45], we adopt
a Rayleigh distribution for building heights in downtown
environment, as utilized in previous research [46], [47].

The UAVs operate at a constant altitude of 10 meters. The
height of Points of Interest (PoIs) matches that of the buildings
on which they are mounted. According to the ITU-R Rec.
P.1410-2 model, we adopt a Rayleigh distribution for building
heights, as utilized in previous research.

In Roma, the longitude ranges from 12.4533 to 12.4790
and the latitude ranges from 41.9261 to 41.9415, covering
approximately 3.64 square kilometers. We randomly posi-
tioned 129 PoIs on top of buildings within this area. In
HKSAR, the longitude ranges from 114.1504 to 114.1635
and the latitude ranges from 22.3262 to 22.3351, covering
1.19 square kilometers; and we placed 156 PoIs. Following
previous works [48], [49] on the channel model, we choose
the simulation parameters as in Table. II.

As shown in Fig. 2, our approach employs three types of
neural networks to learn the high-level policy for UGVs. Both
the critic network and the target critic network are structured
with three linear layers, each containing 128 hidden neurons,
and share identical architectures. The actor network within the
diffusion model features three linear layers with 128 hidden
neurons each. During the denoising process of the diffusion
model, the state of each UGV, the time step embeddings, and
the previous output from the actor network at the last denoising
step are fed into the actor network. For the low-level route-
planning policies of UAVs, we employ a network architecture
similar to that described in [9]. The discount factors, γ, are
set at 0.90 for the Roma dataset and 0.95 for the HKSAR
dataset. The learning rates for the actor and critic networks in
the UGV models are set at 1e-4 and 1e-3, respectively.
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TABLE IV: Impact of γ

Dataset γ ξ η f ψ

0.80 0.827 0.680 0.709 5.472
0.85 0.896 0.706 0.741 8.995

Roma 0.90 0.940 0.719 0.754 7.629
0.95 0.925 0.714 0.752 7.651
1.00 0.858 0.689 0.714 7.611

0.80 1.286 0.830 0.868 5.790
0.85 1.297 0.860 0.898 7.257

HKSAR 0.90 1.363 0.856 0.894 8.256
0.95 1.376 0.858 0.897 7.342
1.00 1.344 0.843 0.881 5.734

B. Impact of Hyperparameters

We first evaluate the influence of the parameter µth in
gMADRL-VCS. As noted in Eqn. (13) and Eqn. (16), the
parameter µth affects the channel-aware stop selection results
and then can influence the overall performance. We set the
number of UAVs V = 4, the number of UGVs U = 4, and the
UAV one-time sensing period τ = 10, respectively. As shown
in Table III, we identify the optimal values of µth = 2.5 and
µth = 3.0 in Roma and HKSAR, respectively. We observe
that all metrics initially increase and then decline as µth rises.
For example, in Roma, the energy efficiency ξ = 0.926 when
µth = 2.5, which is two times higher than that when µth = 2.0.
This is because a higher µth indicate that more PoIs around
a UGV stop can be collected from, thus in larger regions
and fewer selected UGV stops, the diffusion policy model
in gMADRL-VCS enables UGVs to remain at one UGV
stop consistently. This allows UAVs to thoroughly explore
the region, avoiding energy waste from frequent travelling
back-and-forth in the workzone. Beyond this threshold, the
energy efficiency drops. For example, when µth increases
to 3.5 in Roma, ξ drops 43.4% compared with that when
µth = 2.5. This is because as excessive number of PoIs are
included in n(b), as defined in Eqn. (13), UAVs need to fly
across PoI-lacking regions independently. Therefore, within
the constraints of limited time slots, the data collection ratio η
decreases, and both the energy efficiency and the cooperation
factor between UAVs and UGVs experience a decline.

Then, we evaluate the impact of the discount factor γ,
which determines how future rewards are taken into account
in the learning process. A lower γ biases the agent towards
immediate rewards, focusing on short-term gains. As shown
in Table. IV, γ = 0.8 results in the lowest performance across
all metrics. While γ = 1 can also degrade the performance
as it complicates the effective computation and optimization
of value functions. Therefore, according to the results in
Table. IV, we choose γ = 0.90 in Roma and γ = 0.95 in
HKSAR.

Next, we evaluate the impact of the denoising steps L in
the diffusion model. As shown in Eqn. (29), larger denoising
steps L in the reverse process of diffusion models increases
the computation cost. As shown in Fig. 3, we vary L from 1
to 8 and show its impact on the cooperation factor and model
inference time. Notably, we observe the highest UAV-UGV
cooperation factor when L = 5, with ξ = 7.820 and ξ = 8.689
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Fig. 3: Impact of denoising steps L in diffusion model.

TABLE V: Ablation study.

Method ξ µ η ψ

R
om

a gMADRL-VCS 0.926 0.722 0.745 7.820
gMADRL-VCS w/o goal 0.734 0.642 0.666 6.247
gMADRL-VCS w/o diff. 0.722 0.650 0.680 7.015
gMADRL-VCS w/o goal & diff. 0.660 0.641 0.658 5.598

H
K

SA
R gMADRL-VCS 1.334 0.845 0.876 8.689

gMADRL-VCS w/o goal 1.128 0.780 0.805 8.128
gMADRL-VCS w/o diff. 1.188 0.803 0.830 7.752
gMADRL-VCS w/o goal & diff. 1.047 0.771 0.786 7.477

in Roma and HKSAR datasets, respectively. While when L =
5, it also maintains a reasonable inference time.

C. Ablation Study

We gradually remove two key modules, the multi-window
goal-relabeling and the diffusion model (denoted as diff.). We
fix the number of UAVs as 4, the number of UGVs U = 4
and the value of UAV one-time sensing period τ = 10. As
shown in Table V, both two modules have influence on the
energy efficiency ξ and the UAV-UGV cooperation ratio β.
For example, in Roma, when removing the multi-window goal-
relabeling module, ξ and ψ drop 20.7% and 20.1%, respec-
tively. The multi-window goal-relabeling module modifies the
replay buffer D by replacing the desired goal with the achieved
goal from an episode. This process introduces positive training
samples with higher reward into the buffer, accelerating the
initial learning phase. Thus, this module enables UGVs to
learn goal-conditioned policies more effectively, improving the
degree of UAV-UGV cooperation and energy efficiency.

The benefits the goal-conditioned discrete diffusion model
introduced are also clear that for example, in HKSAR, the
UAV-UGV cooperation factor decreases from 8.689 to 7.752,
indicating 10.8% performance drop. This is because our pro-
posal has much better representation ability with the reverse
process q(ḃl−1|ḃl) as defined in Eqn. (21). Thus gMADRL-
VCS is able to learn complex multi-modal UGV navigation
policies under multi-agent scenarios.

D. Comparing with Four Other Baselines

We compare gMADRL-VCS with four baselines, as:
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Fig. 4: Impact of No. of UAVs V (Roma dataset, U = 4, τ = 10).
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Fig. 5: Impact of No. of UAVs V (HKSAR dataset, when U = 4, τ = 10).

• KMAPPO [7]: A cooperative trajectory design method
for disaster area emergency communications based on the
enhanced K-means and MAPPO algorithm. We consider
it as the SOTA approach in VCS by MADRL.

• GARL [9]: It is a graph-based MADRL method that
jointly optimizes the policy of UAVs and UGVs in air-
ground spatial crowdsourcing. We consider it as another
SOTA approach in VCS by MADRL.

• FOP [50]: It is a SOTA MADRL method that factorizes
the optimal joint policy induced by maximum-entropy
MARL into individual policies though value decompo-
sition. As it is also unable not handle the large action
space in the GAS-VCS, we adopt settings from GARL,
allowing FOP to only make decisions for UGVs from
nearby stops with action masks.

• Random: It controls UAVs and UGVs with actions
evenly sampled from their corresponding action space.

1) Impact of No. of UAVs: We set the number of UGVs
U = 4 and UAV one-time sensing period τ = 10, and
investigate the impact of V on four metrics ξ, η, f and ψ
in Fig. 4 and Fig. 5 for Roma and HKSAR, respectively.
As shown in Fig. 4, we observe that the energy efficiency
ξ initially increases and then decreases with more deployed
UAVs. This is because more UAVs can collect more data,
however too many UAVs may not be necessary and they may
waste energy travelling back and forth. Meanwhile, ξ keeps

increasing for GARL and Random methods up to V = 20
UAVs indicating their inefficiency in handling large workzone,
as there are still remaining data uncollected.

Furthermore, gMADRL-VCS achieved the highest energy
efficiency and UAV-UGV cooperation factor compared with
all other baselines. For example, gMADRL-VCS achieved
ψ = 7.820 when V = 4, nearly 2 times of the second best
GARL. This improvement confirms the effectiveness of our
proposal by solving the channel-aware UGV stop selection
problem in Eqn. (16), where UGVs are able to transport UAVs
across distant regions to service those seldom visited PoIs.
While in GARL, UGVs can only deploy UAVs at nearby
stops. Although KMAPPO also achieved comparable results
on data collection ratio and geographic fairness, its UAV-UGV
cooperation factor is much lower.

2) Impact of No. of UGVs: We investigate the impact
of the number of UGVs by varying U = 2 to 12 when
fixing the number of UAVs in Fig. 6 and Fig. 7. When
U = 2, each UGV carries 6 UAVs and when U = 12,
each carries one. We observe that gMADRL-VCS achieved
the best performance; for example, gMADRL-VCS achieved
89.7% data collection ratio with only 2 UGVs in Roma,
while GARL only obtains 35.0%, which is 54.7% lower. This
confirms our proposed goal-conditioned diffusion models can
generate efficient navigation policies for multiple UGVs with
the variational reverse decision process, as in Eqn. (21). Also,
our proposed multi-window goal-relabeling module enhances
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Fig. 6: Impact of No. of UGVs U (Roma dataset, when V = 12, τ = 10).
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Fig. 7: Impact of No. of UGVs U (HKSAR dataset, when V = 12, τ = 10).

the policy optimization towards achieving goals while reducing
navigation distance, as the reward in Eqn. (14).

Furthermore, we observe that the energy efficiency ξ in-
creases with more deployed UGVs for all methods except
Random. For example, in Fig. 6a, when U = 6, FOP achieves
an energy efficiency ξ = 0.561 compared to ξ = 0.303 when
U = 2, marking a 85.1% improvement. This improvement is
due to FOP’s ability to adapt the behavior of UGVs based
on the number of UAVs they carry. Consequently, with more
UGVs, they can collaboratively deploy UAVs across a larger
workzone, enhancing energy efficiency. We also notice that
the ξ of Random remains at a low level for all UGVs since
no cooperation is enforced between them.

We notice that the UAV-UGV cooperation factor initially
goes up but then drops down with more UGVs for both
gMADRL-VCS and GARL, as shown in Fig. 6d and Fig. 7d.
Both methods are capable of generating cooperative strategies
for UGVs. Therefore, with increased number of UGVs, each
only needs to travel a short distance to collect data from nearby
PoIs. However, with too many UGVs, the amount of data
collected by each UGV goes down, leading to a decline in
the UAV-UGV cooperation factor ψ.

3) Impact of UAV One-time Sensing Period: Next, we
investigate the impact of UAV one-time sensing period τ in
Roma and HKSAR as shown in Fig. 8 and Fig. 9, respectively.
We observe that the energy efficiency ξ first increases and then
decreases with longer τ . This is because with longer UAV

sensing period, the UAVs have enough time to thoroughly
explore the regions to collect data from PoIs. However, too
long τ incurs the potential problem of UAV energy waste when
flying around and therefore ξ drops.

From Fig. 8b and Fig. 8d, we see that both GARL and FOP
reach high UAV-UGV cooperation factors but attain low data
collection ratios. This is because both GARL and FOP are
limited to move between nearby stops, whereas gMADRL-
VCS enables UGVs to travel greater distances to collect
more data, which is achieved by our proposed hierarchical
framework and a well-designed goal space as outlined in
Eqn. (12).

4) Impact of average transmitted power of PoIs: We
demonstrate the impact of average transmitted power of PoIs
on four metrics in Fig. 10 and Fig. 11 for Roma and HKSAR,
respectively. As shown in Eqn. (4), the average transmitted
power ρ determines the supported data rate, and then indirectly
influences the UAV planning strategies and UGV routing
policies. As shown in Fig. 10b, the attained data collection
ratio increases with higher ρ, although it slows down as ρ
continues to rise, due to the logarithmic influence of the
average transmitted power of PoIs on data rate µ. We can
observe from Fig. 10c and Fig. 11c that geographic fairness
remains consistent regardless of ρ under the Random policy.
In contrast, policies learned through other methods can adjust
routing based on the average transmitted power of PoIs,
leading to increased data fairness as ρ increases.
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Fig. 8: Impact of length of UAV one-time sensing period τ (Roma dataset, when U = 4, V = 4).
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Fig. 9: Impact of UAV one-time sensing period τ (HKSAR dataset, when U = 4, V = 4).
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Fig. 10: Impact of the average transmitted power of PoIs (Roma dataset).

E. UAV-UGV Trajectory Visualization

We visualize the trajectories of UAV deployment, sensing
and callback, along with the trajectories of UGVs as the carri-
ers in Fig. 12. The results are obtained by gMADRL-VCS in
Roma and HKSAR two datasets, with 4 UAVs and UGVs.
First, we clearly observe the cooperation between UAVs. For
example in HKSAR during t = [1, 40], although three UAVs
(represented with red, purple and blue) are deployed from
the same stop, they fly towards different directions/regions
to collect data. This is due to the adopted CTDE architec-
ture used for MADRL policy optimization, which facilitates

multi-agent policy learning through sharing training samples
and model parameters. Therefore, gMADRL-VCS’s policy
model enables to efficiently conduct long-term planning for
multiple UAVs, aimed at maximizing the designed reward
in Eqn. (15). Second, we observe the efficient collaborative
behavior among UGVs traversing between stops. For example,
in HKSAR dataset when there is little remaining data nearby,
after t = 40, UGV1 (marked in red) and UGV2 (marked
in purple) transported some UAVs to those stops located in
the left part of the workzone. Meanwhile, UGV3 (marked
in blue) navigates to the right side with abundant PoIs for
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Fig. 11: Impact of the average transmitted power of PoIs (HKSAR dataset).
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Fig. 12: UAV-UGV trajectory visualization in Roma and HKSAR datasets.

further data collection. Similar findings can be observed in
Roma dataset where each UGVs corresponds to a region,
dispatching UAVs to collect data from nearby PoIs. The
efficiency can be attributed to our proposed highly expressive
goal-conditioned discrete diffusion model, generating efficient
navigation policies for UGVs. Also, this is further supported
with our multi-window goal relabeling method to facilitate the
learning process. Finally, we observe a high data collection
ratio due to the effective cooperation between UAVs and
UGVs. gMADRL-VCS achieved a high data collection ratio
in HKSAR (with 89.44%) at timeslot t = 100 with only 4
UAVs and UGVs.

VII. DISCUSSION AND CONCLUSION

In this paper, we consider a novel Ground-Air-Space Ve-
hicular Crowdsensing (GAS-VCS) campaign where UGVs
dispatch a group of UAVs to collect sensory data from PoIs
and call them back to transport to another region until the
task completion. We proposed gMADRL-VCS, a hierarchical

MADRL method with diffusion models, to maximize the
overall energy efficiency. Specifically, at the high-level, a goal-
conditioned discrete diffusion model is proposed to generate
representative navigation policies for UGVs, and then the
policy model is optimized through MASAC algorithm. A
multi-window goal-relabeling mechanism is then proposed
to improve the training performance. At the low-level, we
optimize the route-planning policy for UAVs based on IPPO
in a CTDE manner. We conducted extensive experiments on
two real-world datasets in Roma, Italy, and Hong Kong SAR,
China. We found the most appropriate hyperparmaters and
show the benefits of our proposal by performing ablation study
and comparing with four other baselines.

In our future work, we aim to enhance this GAS-VCS
system by integrating additional data types, such as language
commands, to align with human instructions. Additionally, we
will implement our method on actual UGV-UAV platforms and
deploy the system for environmental monitoring and disaster
response to gather essential data.
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