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Abstract—Spatial crowdsourcing (SC) utilizes the potential of
a crowd to accomplish certain location based tasks. Although
worker scheduling has been well studied recently, most existing
works only focus on the static deployment of workers but ignore
their temporal movement continuity. In this paper, we explicitly
consider the use of unmanned vehicular workers, e.g., drones and
driverless cars, which are more controllable and can be deployed
in remote or dangerous areas to carry on long-term and hash
tasks as a vehicular crowdsourcing (VC) campaign. We propose a
novel deep reinforcement learning (DRL) approach for curiosity-
driven energy-efficient worker scheduling, called “DRL-CEWS”,
to achieve an optimal trade-off between maximizing the collected
amount of data and coverage fairness, and minimizing the overall
energy consumption of workers. Specifically, we first utilize a
chief-employee distributed computational architecture to stabilize
and facilitate the training process. Then, we propose a spatial
curiosity model with a sparse reward mechanism to help derive
the optimal policy in large crowdsensing space with unevenly
distributed data. Extensive simulation results show that DRL-
CEWS outperforms the state-of-the-art methods and baselines,
and we also visualize the benefits curiosity model brings and
show the impact of two hyperparameters.

Index Terms—Vehicular crowdsourcing, deep reinforcement
learning, worker scheduling, curiosity model

I. INTRODUCTION

Spatial crowdsourcing (SC [1]) offers a way to utilize the

wisdom of a crowd to perform certain tasks that need on-

location operations. In a SC system, a server assigns a task

to a batch of workers, under some constraints, such as travel

budget, task deadline, and limited transmission bandwidth. A

more specific scenario in SC is mobile crowd sensing (MCS),

where workers use their carried smart devices to perform

sensing tasks, like taking photos, shooting a video, etc. These

sensing data are then uploaded to the server, in order to provide

a specific service to its users. For example, Google Maps

provide street view service by encouraging its users to share

their nearby scenery. Certain locations, where street view car

cannot access, like campus and museums, are available in it

through user contributions by MCS.
Drones and driverless cars offer new opportunities for SC

and MCS, as a vehicular crowdsourcing (VC) campaign. They

are equipped with high precision sensors to perform the data

collection tasks from point-of-interests (PoIs) in remote or

dangerous areas, like earthquake rescue, traffic monitoring,

or disaster reporting. Moreover, drones can be recharged by

landing on the charging station and taking back off again,

which makes a long-term task performance possible. In this

paper, we explicitly consider the problem of worker scheduling

in VC, to maximize the overall collected sensing data un-

der constrained energy budget. Under this scenario, the first

challenge is that to derive a long-term optimal policy for

worker scheduling could be almost impossible due to its spa-

tiotemporal data complexity and correlation. Second, with the

presence of multiple randomly distributed charging stations,

when and where to charge becomes an issue, i.e., finding a

trade-off between task performance and energy charging is

non-trivial. Finally, sensing tasks/data are unevenly distributed.

For example, the earthquake could result in different degree

of damage of different locations.
Recent research progress in the field of deep reinforcement

learning (DRL) achieves great success to derive optimal policy

in large exploration space and outperforms humans on several

complex decision-making problems, by using powerful deep

neural networks (DNNs) for model representation [2]. Our

contribution in this paper is three-fold:

1) We propose a DRL-based solution called “DRL-CEWS”

to maximize the long-term overall collected data and

obtain a trade-off between data collection and energy
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TABLE I: List of important notations used in this paper.

Notation Explanation

w,W Index of an intelligent worker, total no. of workers
p, P Index of a PoI, total # of PoIs
t, T Timeslot, total # of timeslots
qwt , b

w
t , e

w
t , σ

w
t Data collection, energy budget, energy comsumption,

charged energy value of worker w at timeslot t
δpt Data value for a PoI p at timeslot t
d Euclidean distance function

rintt , rextt , rt Intrinsic, extrinsic and total reward at timeslot t
uwt , v

w
t Charging and route planning decision for w at times-

lot t

charging in VC. Specifically, we utilize a distributed

chief-employee computational architecture to stabilize

and facilitate the policy optimization process; and we

use a convolutional neural network (CNN) to strengthen

the capacity of extracting the spatial features in our

crowdsensing space.

2) We propose a spatial curiosity model to predict the

workers’ future locations and take the prediction error as

an intrinsic reward in complex scenarios like areas with

unevenly distributed data. We further design a simple

and general sparse reward mechanism, to derive a more

efficient policy.

3) We conduct extensive experiments for feature, visual-

ize the curiosity effect, and verify the effectiveness of

our proposed solution while comparing with four other

approaches.

The rest of the paper is organized as follows. First, we

review related works in Section II. Then, we present the

system model and problem formulation in Section III and

necessary background information in Section IV. Next, we

propose our proposed solution DRL-CEWS in Section V and

present the corresponding pseudocode in Section VI. Finally,

we show the performance evaluation in Section VII, and draw

the conclusion in Section VIII.

II. RELATED WORK

A. Spatial Crowdsourcing (SC)

SC attempts to match participants with the spatial-temporal

tasks according to their availability and constraints. SC has

been applied in many kinds of systems including real time

traffic speed estimation [3, 4], online car hailing service [5],

data labeling [6], etc. Existing studies can be categorized in

algorithmic model, which can be matching or planning [1]. In

the matching model, algorithms aimed at deriving an optimal

task assignment policy, i.e., assigning a task to a worker, with

different goals. For example, in order to improve crowdwork

quality, Lian et al. in [7] considered overall data quality, and

proposed a prediction-based solution to find optimal task-

worker pair. Chen et al. in [5] considered the problem as

minimizing maximum delay in dynamic worker and requester

system, and proposed a space embedding based online random

algorithm to solve it. Wang et al. in [8] proposed a Restricted

Q-learning method to solve the online matching problem

where both tasks and workers arrive dynamically. Tong et
al. in [9] focused on an online micro-task allocation problem

and proposed a TGOA-Greedy algorithm to perform a global

optimal match. In the planning model, task assignment aims

to plan a route for each worker to perform a sequence of tasks,

considering the deadline and travel cost of tasks.

B. Mobile Crowd Sensing (MCS)

MCS can be considered as a special application of SC,

when workers are assigned tasks of sensing data collection,

like collecting CCTV camera data [10]. Zhou et al. in [11]

considered using drones, but ignore the energy charging is-

sue, which cannot achieve long time monitoring services in

practice. Liu et al. in [12] employed mobile vehicles for

data collection and sensor node charging. Considering most

SC problems have a scalar metric to optimize (e.g., quality,

cost and latency) [13], and traditional method cannot achieve

a long-term optimization solution, DRL based methods are

getting more attention in SC and MCS problems. Wang et al.
in [14] proposed a DRL-based vehicle selection algorithm to

maximize spatial temporal coverage in MCS. Abedin et al. in

[15] proposed the energy efficient intelligent crowdsourcing

during natural calamity through UAVs. Our goal is to design

a novel DRL based solution to make navigation decisions

for VC, with the presence of multiple charging stations and

randomly distributed PoIs.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present our system model. Then

we formulate our problem as an Optimal Long-term Data

Collection (OLDC) problem. Finally, we discuss the metrics

we used to evaluate the performance of our algorithm and

other trajectory planning algorithms.

A. System Model

Definition 1. (Crowdsensing Space) A crowdsensing space is
a 2-D metric space L = {(x, y) |0 < x < Lx, 0 < y < Ly.},
where Lx and Ly are the maximum length along
with x, y, respectively. For any two positions
(xi, yi) , (xj , yj) inside the space, the distance function

d (i, j) =
√
(xi − xj)

2
+ (yi − yj)

2 indicates the Euclidean
distance between their locations.

With respect to (w.r.t.) most cases in the real world, a

worker’s traveling distance has a fixed maximum given a

discretized time slot. Without loss of generality, we assume

a sensing task is deployed in the crowdsensing space, where

intelligent workers, PoIs, charging stations, obstacles are dis-

tributed.

Definition 2. (Intelligent Workers) Let W = {1, 2, ...,W} be
a set of W autonomous moving workers in the crowdsensing
space, e.g., drones and driverless cars. Let (xwt , y

w
t ) be the

current coordinate of worker w at time t, and each w has
its own energy budget bwt . When bwt = 0, the worker w
stops movement. Thus the intelligent workers need to travel
to charging stations before bwt = 0. Let gw be the sensing
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range for worker w, which represents the maximum sensing
capability in terms of PoI coverage, e.g., shooting range or
facing direction of a camera.

Definition 3. (PoIs) PoIs refer to a set of points which contain
valuable information (e.g., data points or streaming videos) to
be obtained by intelligent workers in the crowdsensing space,
defined as P = {1, 2, ..., P}. For each PoI p, it locates at
coordinate (xp, yp) and has a value of δpt at time slot t. In
practice, PoIs are unevenly distributed.

We consider the data associated with each PoI have different

value, e.g., different cameras captures images of diverse spatial

resolutions, different audio life detection instruments generate

data of different qualities. An intelligent worker can wait to be

charged if and only if: (a) the traveling distance between the

worker and charging station is less than a specific range; and

(b) the worker receives a charging decision from the server. We

define the obstacles as regions which workers cannot enter or

go through, e.g., buildings or any ongoing engineering work.

In this paper, we explicitly solve the worker scheduling

problem which refers to the route planning of a group of

intelligent workers in the crowdsensing space given the dis-

tributed PoIs, obstacles and charging stations. We formulate it

as an OLDC problem, where the ultimate goal is to maximize

long-term overall collected amount of data, coverage fairness

among PoIs, under limited worker energy budget. The overall

process is described as follows. We have W workers in our

crowdsensing space. At each time slot t, the server makes

valid navigation decision for each worker w. After the worker

w receives the command, it travels to the position
(
xwt+1, y

w
t+1

)
from (xwt , y

w
t ), either collects data from PoIs within the

sensing range gw from the center position
(
xwt+1, y

w
t+1

)
or

charges itself. We denote the current collected amount of data

by worker w as:

qwt =
P∑
p=1

χw(p)min(λδ
p
0 , δ

p
t ), (1)

where λ denotes the data collection rate, which models the

practical scenario that a worker may not obtain all data at

once, with the limited sensing time in a time slot, e.g., due to

shooting angles/directions, limited field of view, or streaming

nature of video data. χ is a mapping function that indicates

whether a PoI p is within the worker w’s sensing range, as:

χw(p) =

{
1, if d

[(
xwt+1, y

w
t+1

)
, (xp, yp)

]
� gw,

0, otherwise.
(2)

Thus, the overall collected data by worker w up to time slot

t is denoted by Qw
t =

∑t
k=1 q

w
k .

Next, we define the energy consumption model. Let ewt be

the consumed amount of energy by worker w at time slot t,
which is formulated as:

ewt = β ∗ d[(xwt , ywt ), (xwt+1, y
w
t+1)] + α ∗ qwt , (3)

where the first part is the traveling cost, and second part

is incurred by the data collection, where α is the energy

consumption per unit of data collected and β is the energy

consumption per unit of traveling distance. Thus, the current

energy budget of worker w is denoted as bwt = bwt−1−ewt +σwt ,

where σwt donates charged energy value of worker w at

timeslot t. The total energy consumption by worker w up to

time slot t is Ew
t =

∑t
k=1 e

w
k .

B. Evaluation Metrics
In order to evaluate the policy performance and define the

objectives of OLDC problem, we introduce three metrics.

Definition 4. (Average Data Collection Ratio) It is defined
as the averaged ratio between total collected data and inital
data amount for all workers up to time slot t, as:

κt =
1

W

∑W
w=1Q

w
t∑P

p=1 δ
p
0

. (4)

Definition 5. (Average Remaining Data Ratio) Since any
single worker cannot collect all PoIs at a time slot, it is
important to measure the coverage fairness ξt geographically,
which is calculated by the average remaining data ratio for
all PoIs:

ξt =
1

P

P∑
p=1

δpt
δp0
. (5)

Definition 6. (Energy Efficiency) We define a spatiotemporal
metric “energy efficiency” ρt, taking the input of collected
data amount Qw

t and energy consumption Ew
t , weighted by a

Jain’s fairness index [16], among all workers, as:

ρt =

(∑P
p=1

⌈
δp0−δpt
λδp0

⌉)2
P
∑P

p=1

(⌈
δp0−δpt
λδp0

⌉)2 1W
W∑
w=1

Qw
t

Ew
t

. (6)

For a task duration T time slots, an optimal worker schedul-

ing policy π∗ for OLDC problem is defined as:

π∗ = argmax
π

ρT . (7)

We observe four factors in practice, that make OLDC problem

difficult to solve. First, data associated with PoIs are scattered

unevenly in the crowdsensing space, which makes the opti-

mal policy difficult to derive under different circumstances.

Second, obstacles in our condition may largely weaken the

worker’s exploration capability. In rescue cases workers like

drones should have to go into some corner collapse areas for

life search. Third, workers need to learn to be cooperative

(each should be responsible for a subarea not all of the space)

and be competitive (number of charging stations in practice is

not enough for all workers simultaneously, and easily found

PoIs need to be covered only by a small number of workers).

Fourth, when and where to charge the battery becomes an issue

since replenishing battery will increase the future chance of

task completion, but it takes time that workers cannot collect

data at the current time slots.
Obviously, our OLDC problem is NP-hard, and thus in-

tractable. Alternatively, we seek to design an efficient heuristic

method to tackle the OLDC problem, based on DRL.
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IV. PRELIMINARIES

Reinforcement learning (RL) is to learn a mapping function,

from state s to action a, so as to maximize the reward

r. Recently, DRL has developed quickly and has been suc-

cessfully applied to computer games [2], [17] and so on.

Policy gradient algorithms in DRL aim at getting an optimal

policy network which maximizes the total sum of reward, i.e.,

J(θ) = E[
∑T

t=1 γ
t−1r(st,at)], where T is the end time.

In order to measure the relative advantages between differ-

ent actions, it is common to use the mean value estimate ct
across the accessible action space, which does not depend on

current actions or update quickly. Thus, the objective turns to

J(θ) = E[
∑T

t=1 γ
t−1(r(st,at) − ct)]. For r(st,at) − ct, we

use At instead, which indicates how better at is, compared

to ct. Policy gradient methods are popular in DRL, as they

have better converging performance and more efficient in high

dimensional action space, compared with other methods, i.e.

value gradient ones. However, policy gradient methods have

some drawbacks, like high variance and inefficient training

process. In [17], Schulman et al. proposed a robust and simple

policy gradient algorithm, called proximal policy gradient

(PPO). It uses a clipped objective to constraint the updating

step in a trust region, as:

J(θ) = Êt[min(ζt(θ), CLIP (ζt(θ), 1− ε, 1 + ε))Ât], (8)

where ζt(θ) =
πθ(at|st)

πθold (at|st)
denotes the probability ratio with

respect to old policy πθold and updated policy πθ. The CLIP
term removes the incentive for moving ζt(θ) out of interval

[1− ε, 1 + ε], which makes the training process more stable.

In At, they use the state value V (st) to be the baseline.

PPO is relatively simple to implement, more robust and has

a high generality.

V. PROPOSED SOLUTION: DRL-CEWS

In this section, we first model our task assignment as a

Markov Decision Process (MDP), which is the fundamental

assumption of any DRL solution. Then, we introduce our

distributed computational architecture and DNN model design.

Finally, we present our sparse reward mechanism design.

An MDP is a discrete time stochastic control process, which

is useful for studying optimization problems solved by RL

methods. In our worker scheduling problem, the server decides

the optimal policy for each worker, and the decision-making

process of worker navigation only depends on current state,

i.e., the current information in a crowdsensing space, which

satisfies the Markov property.

State: Let st define the state at time slot t, which is

formulated as a matrix of 3 channels. In the first channel, we

place the energy budget bwt for each worker w at its current

position (xwt , y
w
t ). In the second channel, we place the position

and PoI data into the matrix, including the current position

for charging station and obstacles, the current remaining data

value δpt at each PoI p. In the third channel, we place the

PoIs’ access time ht(p) ∈ (0, T ] on their location. That is, if

a PoI p is sensed and its data is collected in time slot t + 1,

we have ht+1(p) = ht(p) + 1. We intentionally include this

in our state, to make sure the server is aware of the coverage

fairness among all PoIs.

Action: There are two kinds of actions for a worker: the

energy charging decision ut and the route planning decision

vt. Let ut = {u1t , u2t , ..., uWt } which indicates whether a

worker should charge itself now or not, where uwt specified

the decision for worker w at the current location (xwt , y
w
t ).

It is valid for a worker to charge when the traveling distance

between worker and charging station is less than a specific

range. On the other hand, the route planning decision at

time slot t is denoted as vt, which indicates the valid next

position (xwt+1, y
w
t+1) a worker w should move to. Specifi-

cally, vt = {v1t , v2t , . . . , vwt }, where xwt+1 = xwt + x (vwt ),
ywt+1 = ywt + y (vwt ) for worker w at time slot t. A valid

route planning action for a worker w is when: (a) w will not

bump into the obstacles or go beyond the crowdsensing; (b)

the current energy budget bwt is not exhausted; (c) ‖vt‖2 can

not exceed a fixed maximum of a worker’s traveling distance.

Therefore, the whole action at is defined as:

at = [ut,vt] (9)

Reward: We consider both extrinsic reward and intrinsic

reward in our solution. The former is human designed, while

the latter is independent of environment and generated by the

DRL agent itself. The total reward in our system is defined as

the sum of intrinsic reward rintt and extrinsic reward rextt :

rt = rintt + rextt . (10)

The intrinsic reward will be explained in Section V-C, and

the sparse extrinsic reward mechanism will be explained in

Section V-D. Although our solution does not need dense

extrinsic reward, in order to train other DRL-based baselines,

i.e., Edics and DPPO, we give the dense extrinsic reward

definition in Section VII-B.

In an MDP, we can easily transfer our OLDC from a NP-

hard problem to a series of decision-making problems. For

DRL methods running with powerful DNNs, the exploration

and exploitation process can be improved and accelerated

significantly, compared to many traditional methods such as

dynamic programming and genetic algorithm.

We next introduce our overall model in three steps, as

is shown in Fig. 1. First is the distributed computational

architecture, which consists of one chief thread and multiple

employee threads. Second is the spatial curiosity model, which

generates the intrinsic reward. Third is the sparse reward

mechanism where we will explain how intrinsic reward works.

A. Chief-Employee Distributed Computational Architecture

As shown in Fig. 1, it consists of two parts: a chief

thread and multiple employee threads, with PPO as the

policy network. Although asynchronous setting can be more

efficient than the synchronous one, the decoupling between

data sampling and policy learning will result in a policy-

lag [18] between chief and employees, which will further
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Fig. 1: Overall proposed DNN model.

make the learning process unstable. Espeholt et al. in [18]

proposed a novel off-policy correction method called V-trace

to achieve stable learning in single-players games, such as

Atari. However, the number of drones in practice will be

large. Therefore, in our setting, we simply adopt a synchronous

structure to ensure robustness and stability in most cases.

The chief thread works as follows. First, it waits until all

the employees have sent the gradient w.r.t. PPO network

parameters. Second, the optimizer in chief updates the global

PPO model parameters along the negative direction of the

gradient. Meanwhile, each employee thread works in parallel

and has independent local PPO model and local environment.

In Fig. 1, we take Employee 1 for example. First, it copies

the parameters from the global PPO model into its local

PPO model. Then, it interacts with the local environment

using the policy from local PPO and stores the experiences.

Third, it uses the stored experiences to compute the loss

function. Finally, it derives the gradient w.r.t. local PPO model

parameters and sends the gradient to PPO gradient buffer.

There are two global gradient buffers in our architecture,

i.e., PPO gradient buffer and curiosity gradient buffer, as

shown in the center part of Fig. 1. The PPO gradient buffer

accepts the gradient sent by employee threads from local

PPO model, sums them up, and sends them to chief. The

curiosity gradient buffer works the same and serves for spatial

curiosity model. In this way, the proposed Chief-Employee

distributed computational architecture can help generate much

more diverse experiences and to make the update process more

stable and quicker to converge.

B. DRL Agent by PPO for Multi-Worker Action Generations

As introduced in Section IV, PPO can derive optimal and

robust policy by updating steadily constraint by a clip func-

tion. Considering the strong spatial characteristics of workers,

obstacles, charging stations, PoIs, and the relationship between

them, we use the powerful CNN to extract the feature of the

state. Given the state in our system is not as complicated as

a real image, we adopt a small CNN which consists of three

convolutional layers and one fully collected layers to output a

1D state feature φ(st). We add layer normalization to make

the updating process more stable, as shown the dark blue layer

after each CNN layer in Fig. 1.

The value network V aims at predicting the accumulated

reward obtained by the workers from time slot t to the task

completion time slot T . The input is φ(st) and the output is

a scalar value V . We update the V by minimizing the loss

function as:

Lossv = (‖Gt, V (φ(st))‖2)2, (11)

where Gt = rt + γrt+1 + ... + γT−t+1rT−1 + γT−tV (sT ),
which denotes the expected sum of reward till time slot T .

For the policy network π, we use the clip surrogate objective

to derive the energy charging action and movement action for

each worker, as:

J = Êt[min(ζtÂt, CLIP (ζt, 1− ε, 1 + ε)Ât)]. (12)

C. Spatial Curiosity Model for Generating Intrinsic Reward

A good reward design is key for a successful policy learning.

DRL algorithms work well on game problems, whose goal is

quite explicit and the reward is densely distributed. However,

in many real life scenarios, densely distributed reward is hard

to obtain and the DRL agent may fail to derive an optimal

policy. Humans, on the other hand, show a strong learning

ability in such scenarios. For example, on your first day in

school, you walk around the campus and get yourself familiar

with the strange environment, without any explicit objectives.

Mimicking human behaviors, a DRL agent generates its own

intrinsic reward, which we call “curiosity”, to accelerate its

training process. Pathak et al. in [19] proposed his curiosity

model consisting of three networks. The first is an encoding

network, mapping current state st to its feature ϕ(s), next

state st+1 to ϕ(st+1). This feature network extracts the spatial

feature and focuses on the changes in environment that only

due to the agent’s action. The second is a forward model, that

takes inputs ϕ(st) and at, and predicts the feature encoding

of the state at time slot t+ 1, as:

ϕ̂(st+1) = f(ϕ(st),at; θF ), (13)

where ϕ̂(st+1) is the predicted feature encoding of st+1. The

forward model aims at minimizing the loss function:

Lossf (ϕ̂(st+1), ϕ(st+1)) = (‖ϕ̂(st+1)− ϕ(st+1)‖2)2.
(14)

Meanwhile, the forward model loss Lossf applies to the

intrinsic reward rintt at time slot t, i.e., rintt = ηLossf , where

η is a scaling factor to control the proportion of intrinsic

reward in total sum of extrinsic and intrinsic rewards. In order

to make the feature encoding network ϕ more reliable, an

inverse model is used to predict the action at, given ϕ(st)
and ϕ(st+1).

In this paper, we propose a spatial curiosity model. We for-

mulate curiosity as the continuous exploration for a novel state,

including: (1) Traveling to where workers have seldom or even

never visited before; (2) Taking different route planning vt
at the same location; (3) Avoiding frequent collisions with

obstacles in the early exploration process. More specifically,

we predict the embedding feature ϕ̂(lt+1) of worker’s next

position, given each worker’s current position, denoted as
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lwt = (x
w
t , y

w
t ) and route planning decision vwt in a forward

model, denoted as f , where:

ϕ̂(lt+1) = f(ϕ(lt),vt). (15)

We update the forward model by minimizing the loss function:

Lossf = (‖ϕ̂(lt+1)− ϕ(lt+1)‖2)2. (16)

As mentioned, the intrinsic reward rintt is computed by:

rintt = ηLossf . (17)

D. Sparse Reward Mechanism

We design a sparse reward mechanism as the extrinsic

reward for our solution. The intuition behind is to reward

agent intermittently, so as to avoid being trapped in a local

suboptimal policy. Dense reward is essential in DRL, where

the agent gets a reward every time slot, and updates its policy

according to the accumulated reward. However, dense reward

could also lead to a local sub-optimal policy optimization. For

example, in a crowdsensing space where PoIs are unevenly

distributed, a worker may get higher reward in a rich data area,

but get much lower reward in sparse data area. Apart from the

data importance in sparse area, in this case, the worker may

lose the opportunity to go through the sparse data area and

fail to find charging stations due to limited energy budget.

Therefore. we should design a mechanism to reward the agent

for its long-term data collection, rather than focus on present.

We propose a simple and sparse extrinsic reward, where the

DRL agent gets reward intermittently from time to time, as:

rw,extt = Υ1
t +Υ

2
t − τwt , (18)

where Υ1
t = 1, whenever the data collection ratio κwt increases

ε1, otherwise 0; Υ2
t = 1, whenever the charged energy ratio

σwt /b
w
0 is larger than ε2, otherwise 0. Here ε1 and ε2 are two

bounds as hyperparameters. τwt represents the penalty given

to worker w if it hits the obstacle. Then, our total extrinsic

reward rextt is formulated as:

rextt =
1

W

W∑
w=1

rw,extt . (19)

VI. ALGORITHM DESCRIPTION

We implement our algorithm in a synchronous manner, com-

posed of one chief thread and multiple employee threads. The

former is responsible for collecting the gradient sending from

the employee threads and then updating the global model using

an optimizer, e.g., Adam optimizer. The employee threads

sample actions from the model, interact with environment,

compute and send parameter gradients to the chief.

A. Pseudocode in Algorithm 1: Employee threads

The input is the current state st, while the output is policy

ut and vt for every worker. We first randomly initialize the

state s0 and the parameters of embedding feature extractor ϕ,

policy network π, value network V , forward model f , CNN

model φ, along with the empty replay buffer D to store the

Algorithm 1 Pseudocode: employees

Input: current state st
Output: energy charging action ut and route planning action

vt
1: Initialize s0, φ, π, V , f , ϕ and replay buffer D;

2: for Episode in 1, 2, · · · do
3: Clear up replay buffer D
4: for t in 1, 2, · · · , T do
5: Get feature representation φ(st) from CNN;

6: Derive route planning action vt and energy charging

action ut from policy model π;

7: for w in 1, 2, · · · , W do
8: broadcast uwt and vwt to worker w;

9: Receive the overall collected data and next position

from worker w;

10: end for
11: Calculate the sparse extrinsic reward rextt through

Eqn. (18) and Eqn. (19);

12: Derive the intrinsic reward rintt through Algorithm 3;

13: Calculate the total reward through Eqn. (10);

14: Update the replay memory buffer D by adding a new

record [st,ut,vt, rt];
15: end for
16: πold ← π;

17: for k in 1, 2, ... K do
18: Sample a mini batch experience from D;

19: Compute gradients w.r.t π, V , φ and f ;

20: Send gradients to chief;

21: Wait until notification from chief;

22: Copy parameters from global PPO and curiosity

model to the employee’s local model, respectively;

23: end for
24: end for

historical information (Line 1). For each episode, there are

exploration (Line 4-15) and exploitation (Line 17-24).

For exploration, the algorithm collects history samples. At

t, we first feed st into CNN and extract the efficient feature

φ(st). Then, we feed φ(st) into the policy model π and derive

the route planning policy probability distribution across action

space, and sample action vector vt from it (Line 6). Also, we

derive the charging policy probability distribution from π and

sample energy charging action vector ut from it (Line 6). After

obtaining the policy, the server notifies every worker its action

uwt , v
w
t (Line 8). After that, each worker moves accordingly.

Next, each worker reports the sensing data and its own status

(e.g., remaining energy, current location) back to the server, the

server calculates the sparse extrinsic reward by Eqn. (19) (Line

11). We obtain the intrinsic reward from Algorithm 3 (Line 12)

and combine it with rextt . Finally, the employee inserts a new

experience into the memory buffer D. This process repeats

and ends at time slot T .

After T time slots, each employee starts exploitation to

update policy network π, value network V , CNN φ, forward

network f . For each round of update k (Line 17), the employee
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Algorithm 2 Pseudocode: chief

1: for Episode in 1, 2, · · · do
2: for k in 1, · · · , K do
3: Wait until all employees son have sent gradients w.r.t

π, V and φ;

4: Update global PPO model;

5: Wait until all the son have sent gradients w.r.t f ;

6: Update global spatial curiosity model;

7: Clear global gradient buffers;

8: Notify all employees;

9: end for
10: end for

Algorithm 3 Pseudocode: Spatial Curiosity Model

Input: workers position (xwt , y
w
t ), (x

w
t+1, y

w
t+1)

Output: intrinsic reward rintt

1: for w in 1, 2, ... W do
2: Get embedding feature ϕ of position (xwt , y

w
t ),

(xwt+1, y
w
t+1) respectively;

3: end for
4: Get Lossf in Eqn. (16)

5: Get intrinsic reward in Eqn. (17)

first samples a mini batch of experiences from D. Then,

it calculates J by Eqn. (12), and uses back propagation to

calculate the gradient w.r.t. network parameters in π. It also

derives the gradient for V , φ, f . Then, the employee sends the

gradients for V , φ, π to the PPO gradient buffer and sends the

gradients for f to curiosity gradient buffer (Line 20-21). The

parameter optimization does not happen in employee threads.

Instead, the employee waits for the notification from the chief

and copies parameters from the global model (Line 22).

B. Pseudocode in Algorithm 2: Chief

In chief, for each update iteration k, it waits until all M
employees have sent the gradient of θ, V and φ (Line 3), and

sums up these gradients from different employees for updating

global PPO model immediately (Line 4). It is same for the

forward model f (Line 5-6). After, the chief clears up the

global gradient buffers and notifies all M employees to start

model parameter copying, as well as a new round of updating

process (Line 8).

C. Pseudocode in Algorithm 3: Spatial Curiosity Model

The spatial curiosity model aims at generating the intrinsic

reward based on the variety of state prediction. Specifically,

it receives every worker’s position lwt = (xwt , y
w
t ), l

w
t+1 =

(xwt+1, y
w
t+1) and route planning action vwt . First, it obtains

the embedding feature ϕ(lwt ) and ϕ(lwt+1) (Line 2). After, it

derives the prediction loss by Eqn. (16). Finally, it gets the

intrinsic reward rintt as in Eqn. (17).

D. Testing Process

In a training process, the parameters in DNNs are periodi-

cally saved for testing. During testing, for all of the workers,

we only use the trained policy network π to output their actions

at simultaneously by policy model π, given the current state

st. Then, task environment gives the workers sparse extrinsic

reward rextt , and updates their state by st+1. Therefore, our

algorithm is a centralized control system which navigates

multiple workers to collect data by a powerful VC server.

In detail, we use two kinds of neural networks, CNN and

fully connected layers. The computation complexity of a L-

layer CNN is O
( L∑
l=1

k2l · a2l · nl−1 · nl
)

where l is the index of

a CNN layer, and kl, al, nl−1, nl are kernel size, output feature

map size, input channel and output channel respectively. For

fully connected layers in actor-critic networks, the computa-

tion complexity is O
( L∑
l=1

nl−1 · nl
)

where nl is the number of

neural units in fully-connected layer l.

VII. EXPERIMENT

In this section, we first present the simulation setup, and

then compared baselines, state-of-the-art approaches as well as

metrics. Then, we show the comparison results, feature selec-

tion for curiosity model, and curiosity effect by visualization.

All experiments are conducted on a Ubuntu 18.04 server with

one NVIDIA RTX graphic card and Intel(R) Xeon(R) Gold

6238 CPU @2.10GHz.

A. Setup

We consider the drone-assisted post-earthquake rescue, and

created a 3D simulation environment by Unity 2019.2.5f1 in

Fig. 2(a). Corresponding 2D map layout (i.e., crowdsensing

space) is shown in Fig. 2(b), with four basic elements: col-

lapsed buildings (obstacles), charging stations, sensors (PoIs)

and drones (workers). In particular, sensors are audio life

detection instrument and infrared radiation camera. We also

design a hard exploration subarea at the bottom right corner,

which represents semi-destroyed collapsed buildings, where

drones should make efforts to go into that area through a

narrow passageway to collect data from the embraced sensors.

We generate sensor positions through a mixture of Gaussian

distributions and a random distribution. For each sensor p, we

generate its initial data value randomly, i.e., 0 < δp0 < 1.
For drones, their positions are also randomly initialized, and

their initial energy budget is bw0 = 40 units, and set their

sensing range gw as 0.8. We set data collection rate λ = 0.2
as in Eqn. (1). For energy consumption, we set α = 1.0 and

β = 0.1 as in Eqn. (3). A charging station’s effective charging

range is 0.8, which represents the pump pipe length. For our

sparse reward setting, we set ε1 = 5% for data collection

and ε2 = 40% for energy charging. We set η = 0.3 for

our curiosity model. Fig. 2(c) shows the illustrative moving

trajectories for two drones.

B. Compared Baselines and State-of-the-Art Approaches

• D&C: Lian et al. in [7] proposed a prediction-based

algorithm to solve the maximization of task quality, called

divide-and-concur (D&C). It includes next step condition

into current time task assignment decision. In our case,
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(a) Scenario simulation for post-earthquake rescue. (b) Considered 2D crowdsensing space. (c) Attained trajectories for 2 drones
and 4 charging stations.

Fig. 2: Experimental setup, simulation and trajectory visualization.

we first derive all the possible positions for workers at

time slot t + 1 and t + 2, and calculate the expected

collected data. After, we choose the actions that can

maximize the expected collected data for time t.
• Edics: Our previous work in [20] proposed a multi-agent

DRL-based algorithm to maximize the total collected

data. We implement it by using W agents, each of which

makes task assignment decision for one worker.

• DPPO: Heess et al. in [21] proposed a distributed PPO

model (called DPPO) to train several simulated bodies

on a diverse of challenging terrains to learn running,

jumping, etc. This architecture facilitates the training

process, and achieves a much better result than PPO itself.

We implement DPPO and adopt the reward function in

Eqn. (20). We also adopt the per-batch normalization of

advantages mentioned in paper and set the number of

employees as 8, batch size as 250.

• Greedy approach: For each time slot t, the server first

derives all the possible positions for worker w at time

t+1, and then calculates the corresponding collected data.

After, the worker w travels to the specific position that

maximizes the collected data while satisfying its current

energy budget.

Note that both Edics and DPPO depend on the extrinsic and

specific reward function definition, including the overall col-

lected data, energy consumption and the geographical fairness.

Therefore, We formulate their dense reward function as:

rwt =
1

W

W∑
w=1

(
qwt
ewt
+
σwt
bw0

− τwt

)
, (20)

where the first term indicates the reward for data collection,

and the second term indicates the reward for charging energy,

and the third term indicates the penalty for bumping into the

obstacle or going beyond the space, respectively.
As discussed in Section III-B, we reuse these three evalua-

tion metrics to evaluate the effectiveness of algorithms in our

system, as: average data collection ratio κ, average remaining

data ratio ξ, and energy efficiency ρ.

C. Impact of DNN Hyperparameters
We evaluate the impact of two most important hyperpa-

rameters in our model, namely (a) number of employees (in

TABLE II: Impact of two hyperparameters.

# of employees 1 2 4 8 16

batch size 50
κ 0.372 0.570 0.871 0.840 0.86
ξ 0.6414 0.486 0.176 0.208 0.185
ρ 0.100 0.189 0.402 0.380 0.395

batch size 125
κ 0.522 0.753 0.851 0.911 0.921
ξ 0.5203 0.2886 0.19 0.1235 0.11
ρ 0.176 0.385 0.397 0.445 0.445

batch size 250
κ 0.510 0.765 0.886 0.927 0.937
ξ 0.5237 0.291 0.136 0.117 0.1
ρ 0.173 0.376 0.440 0.452 0.460

batch size 500
κ 0.363 0.650 0.834 0.900 0.922
ξ 0.6484 0.373 0.187 0.125 0.116
ρ 0.139 0.323 0.393 0.435 0.448

Fig. 3: Training time with different no. of employees.

distributed computational architecture) and (b) updating batch

size. As shown in Table II, the performance improves with

more employees. However, from the training time in Fig. 3, we

see that for 16 employees when batch size is 250, the running

time is 45.5% significantly longer than that of 8 employees,

but only 1.7% increases in ρ.Therefore, we choose the batch

size of 250 and 8 employees.

D. Feature Selection for Curiosity Model

Burda et al. in [22] carried out large scale experiments

to test the effectiveness of different representation networks

for their curiosity model. Surprisingly, they found that a

static randomly initialized CNN has a stable performance, and

sometimes it does better than learned features. To this end,

in our scenario, we consider two stable representations of a

worker’s spatial information, i.e., the direct feature and the

embedding feature. The direct feature extractor directly scales

a worker’s position into range (0, 1). The embedding features

utilizes a static embedding layer, to map the position to a 8

dimensional spatial vector.
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(a) κ (b) ξ (c) ρ

Fig. 4: Impact of feature selection for curiosity model.

(a) κ (b) ξ (c) ρ

Fig. 5: Impact of dense and sparse reward w/ and w/o curiosity.

We also consider the curiosity model structure as an in-

fluencing factor. Specifically, we design two kinds of struc-

tures, called independent structure and shared structure. For

the former, we have W independent curiosity models for

every worker. The model for worker w takes w’s position

information as input, and generates intrinsic reward only for

w. By contrast, in a shared structure, there is only one curiosity

model, and takes the position information from worker 1
to W as inputs sequentially, and also outputs the intrinsic

reward for workers orderly. Then, we combine the above

feature extractors and model structures, and form four kinds

of curiosity feature extractors, i.e., shared embedding feature,

shared direct feature, independent embedding feature, and

independent direct feature. Besides, we use a state-of-the-

art curiosity model called random network distillation (RND)

[23], which models the next state prediction error as the

intrinsic reward. We set W = 2 and P = 200 in our

simulation.

Results are shown in Fig. 4. It is obvious that an embedding

feature is much better than the direct representations. For

example, in Fig. 4(a), κ at episode 2,500 for the embedding

feature is 27% and 25% higher than the direct features in

shared and direct structure, respectively. This is because that

two locations could be far away from each other in the embed-

ding space, even if these two points are close physically. Also,

this can bring a larger intrinsic reward, which facilitates the

training process to converge to an optimal policy. Furthermore,

we see that RND feature is inefficient in our system. One of

the possible explanation is there are multiple workers in our

system, and the size of the state is too complex for modeling.

It also indicates that modeling the conjoint features of multiple

workers in curiosity model may be inefficient.

Besides, we also notice that the shared model structure con-

verges more quickly than independent structure and achieve

a better performance. This is because that the former allows

different workers to share their historical information by using

common parameters, and a worker could discover a better

policy by following others’ experiences. Also, the number of

parameters in shared model does not grow with more workers.

On the other hand, the space complexity for independent

structure will be multiplied with more workers. Hence, we

decide to select the shared embedding feature for our curiosity

model considering its effectiveness and fixed space complexity.
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(a) Varying number of PoIs (b) Varying number of workers (c) Varying energy budget (d) Varying no. of charging stations

Fig. 6: Results of average data collection ratio κ.

(a) Varying number of PoIs (b) Varying number of workers (c) Varying energy budget (d) Varying no. of charging stations

Fig. 7: Results of average remaining data ratio ξ.

(a) Varying number of PoIs (b) Varying number of workers (c) Varying energy budget (d) Varying no. of charging stations

Fig. 8: Results of energy efficiency ρ.

E. Impact of Different Reward Mechanisms with Curiosity

We set W = 2 and P = 300 in our simulation and

evaluate our curiosity model in dense and sparse extrinsic

reward mechanisms, respectively, as shown in Fig. 5. First, we

observe that all four methods converge to a stable performance

after 2,000 episodes. The combination of sparse reward and

curiosity acts the best over κ, ξ and ρ. For example, in

Fig. 5(c), “sparse reward with curiosity” achieves ρ = 0.48,
which is 4.35%, 77.8% higher than that of “dense reward only”

(whose ρ = 0.46), and “sparse reward only” (whose ρ = 0.27).
The result of sparse reward only indicates that DRL-based

method does not work well in a sparse reward environment.

However, with the help of intrinsic reward design, DRL-

CEWS converges quickly (i.e., the sparse reward with curiosity

achieves a stable performance after 1,500 episodes) and is

more effective.

We also notice that the curiosity does not bring a large

improvement in the dense reward environment, except that it

is rising faster in the initial stage of training (before 1,000

episodes). They achieve the almost the same performance,

as κ = 0.81, ξ = 0.79, ρ = 0.46 in episode 2,500.

Hence, the inclusion of curiosity indeed can facilities the

training process and speed up the convergence in dense reward

environment. However, curiosity has limited effect in dense

reward environment, where the well-designed reward function

plays the main role.

F. Impact of Number of PoIs

We compare our solution with other four algorithms in

Fig. 6(a), Fig. 7(a) and Fig. 8(a). We fix W = 2, and vary P
from 100 to 500 without changing the distribution of PoIs. We

observe that the DRL-CEWS achieves the best performance

in κ, ρ and ξ. For example, when P = 500, it achieves an
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Fig. 9: Curiosity visualization by showing the curiosity

value for a worker at its passed location, where the top

five figures show the result of DRL-CEWS in episode

[0,150,300,450,600], and the bottom five figures show that of

DPPO solution.

energy efficiency 0.60, which is 23.98%, 55.83%, 123.07%,

371.28% higher than DPPO, Edics, D&C and Greedy methods,

respectively. More PoIs impose more challenges for workers,

because rich data area may lead a worker to a local suboptimal

solution with bigger extrinsic reward. However, this may lead

to a lower κ and ρ in a long term. Greedy and D&C fail

to achieve the trade-off between data collection and energy

charging, because they lack the ability to predict the multiple

steps ahead. However, in our solution, curiosity model helps

to drive the workers explore sparsely distributed subareas by

generating the intrinsic reward, for the long run.

As shown in Fig. 6(a), the average data collection ratio

decreases with more PoIs. For example, when P = 100, κ is

25% more than that of when P = 500 for our method. This is

because the worker’s data collection capability is limited by its

energy budget, and thus the same number of workers may not

be sufficient to collect all data with more PoIs. We also notice

that DRL-CEWS achieves a lower average remaining data

ratio, compared with the other four algorithms in Fig. 7(a). For

example, when P = 100, ξ = 0.07 for DRL-CWES, which is

0.36 and 0.67 lower than that of Edics (whose ξ = 0.43) and

Greedy (whose ξ = 0.74), respectively.

G. Impact of Number of Workers

We vary W from 1 to 25, and fix P = 300 in Fig. 6(b),

Fig. 7(b) and Fig. 8(b). Here a worker refers to drones or

driverless cars, that have stronger capability for sensing which

usually can service a group of human participants simultane-

ously, as a mobile base station. From Fig. 6(b), we can see that

the average data collection ratio increases when more workers

are deployed. Specifically, for Edics, κ = 0.60 with 5 workers,

which is 71.42% higher than κ = 0.35 when W = 1. This is

because with more workers, they learn to be responsible for a

subarea, which improves the overall collected data quantity

in a given time period. Furthermore, our method achieves

the highest energy efficiency in Fig. 8(b). This is collectively

achieved by our distributed Chief-Employee computational

architecture for generating more effective experiences and

updating DNN parameters, and spatial curiosity model with

sparse reward design for better long-term exploration.

We also find that ρ decreases when W > 4. For example,

when W = 25, the energy efficiency for DRL-CEWS is 0.12,

which is 0.38 lower than ρ = 0.49 when W = 5. This is

because, after most data are collected, workers still should

move around to search for the corner cases. As a result, with

more than enough workers, the energy efficiency decreases.

H. Impact of Energy Budget

We explore the impact of energy budget. Results are shown

in Fig. 6(c), Fig. 7(c) and Fig. 8(c). We see that DRL-CEWS

remains high performance even with little energy budget. For

example, when energy budget is 20, κ = 0.71 for DRL-CEWS,

which is 22%, 41%, 48%, 53% higher than that of DPPO

(whose κ=0.49), Edics (whose κ=0.30), D&C (whose κ=0.23)

and Greedy (whose κ = 0.18). This is because even with

little energy budget, DRL-CEWS can still find a good trade-

off between energy charging and data collection with the help

of spatial curiosity model.

I. Impact of Number of Charging Stations

We vary different number of of charging stations. Results

are shown in Fig. 6(d), Fig. 7(d) and Fig.8(d). From Fig. 6(d),

κ increases from 2 to 6 stations, and remains unchanged from

6 to 10. For D&C, κ = 0.67 with 6 charging stations, which

is 19% higher than κ = 0.28 with 2 charging stations, and

remains unchanged with 6 to 10 charging stations (where

κ = 0.67). For DRL-CEWS and DPPO, they all find an energy

efficient route with necessary charging stations. Therefore,

excessive charging stations have little influence on them. For

Edics and D&C, more charging stations help explore larger

regions, than that of DRL-CEWS and DPPO. We also notice

that charging station amount has nearly no influence on Greedy

approach. This is because with Greedy, workers are easily

trapped in a small region; thus they may use up their energy

budget and fail to find other charging stations.

J. Curiosity Visualization for DRL-CEWS and DPPO

In order to show how our curiosity model helps to obtain a

good task assignment policy, we visualize the curiosity value

for each location where a worker has visited in the past as a

heat map, i.e., W = 1, when P = 300, as in Fig. 9.

For both methods, the curiosity value rintt is decreasing

when the the training process progresses, as shown the bright-

ness is weakened. This also means that the policy is becoming

more stabilized, since at each specific location, the worker’s

action is almost fixed. As a result, the predicted loss Lossf

is minimized. From these figures, we can explicitly show how

curiosity helps to derive an optimal policy. For example, it is

very bright in episode 300, since the worker has never been to

that subarea before, and thus the loss for the forward model

is large, which brings a high intrinsic reward. Referring to the

entrance of the corner area in Fig. 2(b), our DRL-CEWS gives

the worker a large intrinsic reward when it visited the corner.

From the contrasted heat map between our method and DPPO,

we can clearly see the benefit of proposed spatial curiosity

model that encourages the policy exploration. Thus the area
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of the brightness space is larger than that of DPPO. This is

further confirmed by illustrative trajectories in Fig. 2(c).

VIII. CONCLUSION

In this paper, we explicitly consider the VC problem with

multiple unmanned workers to perform a sensing task, with

the presence of multiple charging stations. We proposed a

DRL-based approach, called DRL-CEWS, which utilizes a dis-

tributed chief-employee computational architecture with PPO

agent to derive the optimal policy. We also include a novel

spatial curiosity model with sparse reward design for better

exploration so that an optimal policy in large crowdsensing

space with unevenly distributed data can be obtained. We

conducted extensive experiments to show that DRL-CEWS

outperforms all other baselines and state-of-the-art methods,

and we showed the impact of two hyperparameters and process

of feature selection. Finally, we visualized the benefits of our

curiosity model.
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