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Abstract

End-to-end visuomotor policies aim to directly map vi-
sual observations to low-level control commands, facilitating
autonomous manipulation in complex, unstructured environ-
ments. In recent years, imitation learning has demonstrated
strong performance by leveraging large-scale human tele-
operation data. However, the generalization capability of
such models is inherently limited by the diversity of object
configurations and manipulation strategies present in the
demonstrations. In contrast, reinforcement learning (RL)
offers the potential for greater scalability by enabling agents
to improve through interaction. Nonetheless, deploying RL
in real-world scenarios remains challenging due to issues
such as inefficient exploration, limited generalization, and
the high cost of scalable online training. This work ad-
dresses these challenges by proposing methods that (i) im-
prove exploration in sparse reward settings, (ii) enhance
visual generalization for robust policy execution, and (iii)
enable scalable online learning via human-in-the-loop in-
teraction. Collectively, these contributions advance the de-
velopment of adaptive and resilient visuomotor policies for
real-world robotic manipulation.

1. Introduction
End-to-end visuomotor policies, which map raw visual obser-
vations directly to control commands, have become increas-
ingly important in robotic manipulation [1–3], autonomous
driving [4–6], and other embodied AI domains [7]. Imita-
tion learning, often leveraging expressive models such as
diffusion [3] and Transformers [8], has dominated this field.
However, its effectiveness is bounded by demonstration qual-
ity, particularly the proficiency of human operators. Rein-
forcement learning (RL), in contrast, offers the promise of
autonomous improvement through interaction, but remains
difficult to scale to real-world applications.

Three key challenges limit the deployment of RL for vi-
suomotor control. First, sparse reward signals in real-world
tasks make exploration inefficient and policies prone to sub-

optimal convergence. Prior work has attempted to address
this with dense, handcrafted rewards [9], but such approaches
require domain-specific knowledge and significant human
effort, limiting scalability. Second, robust visual representa-
tion learning is critical: policies trained end-to-end often fail
under visual variation because perception and control are
learned jointly. Although effective techniques such as affor-
dance learning [10, 11] and preference learning have been
proposed, scalable unsupervised techniques are still needed
to reduce reliance on human supervision. Third, efficient
online learning with necessary human assistance remains
challenging. Real-world deployment requires both hardware
that facilitates seamless human feedback and algorithms that
can incorporate such corrections effectively.

My research addresses these fundamental challenges of
real-world RL from three complementary perspectives. First,
we focus on automatically generating informative intrinsic
rewards to compensate for sparse extrinsic feedback. To
this end, we propose a curiosity-driven reward module that
leverages shared position embedding features, enabling scal-
able learning in multi-agent systems. Second, we aim to
enhance visuomotor policy learning by extracting control-
relevant features from high-dimensional inputs. We develop
unsupervised, attention-based observation augmentation and
feature extraction methods to improve visual generalization
and support robust RL control. Third, we incorporate essen-
tial human guidance through a low-cost teleoperation system
and a human-in-the-loop RL (HIL-RL) framework, allowing
efficient online adaptation in real-world settings. Together,
these advances aim to enable scalable, adaptive, and resilient
visuomotor policies, thereby broadening the applicability of
RL in embodied AI domains.

2. Automatically Generating Informative Re-
wards

Training RL agents in environments with sparse or mislead-
ing rewards remains a fundamental challenge, especially
in real-world embodied AI where accurate environmental
states are often unobtainable due to missing or noisy sensors.
Reward shaping is a widely used engineering approach to
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provide more informative feedback, but it is prone to re-
ward hacking [12], where agents maximize returns without
achieving task goals, and it requires extensive human ef-
fort to refine reward functions. To address these limitations,
previous research explores generating rewards from agents’
own experience. For example, ICM [13] uses prediction
error in the feature space as a curiosity signal to encour-
age exploration of uncertain states. RND [14] introduces
intrinsic rewards based on output discrepancies between a
predictor and a fixed randomly initialized target network.
While effective for short-term exploration, it struggles with
long-horizon tasks requiring global exploration. To scale
intrinsic rewards to longer decision horizons and multi-agent
settings, we developed DRL-CEWS [15], a spatial curiosity
model with a sparse reward mechanism designed for large-
scale crowdsensing environments with unevenly distributed
data. The core innovation is shared position embeddings,
which allow agents to leverage others’ experiences to predict
future positions conditioned on current actions. In addition,
a chief–employee distributed computational architecture en-
hances sample diversity and improves exploration.

With the rapid development of large language models
(LLMs) and vision–language models (VLMs), recent re-
search has sought to leverage their strong visual–language
understanding, commonsense reasoning, and coding capa-
bilities for reward generation. One line of work queries
LLMs or VLMs to synthesize reward functions from envi-
ronment context or image–language inputs [16, 17]. Another
line queries VLMs at every decision step to estimate task
progress [18, 19]. However, these methods typically treat
model outputs as ground truth. In practice, we found that
VLM predictions are often inaccurate in manipulation sce-
narios, with errors further amplified under occlusions. To
address this issue, we propose T2-VLM [20], a training-free,
temporally consistent framework that generates accurate re-
wards by tracking status changes in VLM-derived subgoals.
Unlike prior methods, T2-VLM requires only a single VLM
query per episode, making it computationally efficient and
robust to initial estimation errors of VLMs. Experiments
demonstrate that our approach substantially improves failure
recovery in RL-based robot manipulation policies.

3. Automatically Learning Control-related Rep-
resentations

While informative reward generation can improve training
efficiency, it contributes little to generalization under visual
appearance changes. In such cases, extracting control-related
features becomes essential. Data augmentation is a classi-
cal strategy to enhance visual generalization by enriching
observation spaces. However, prior works either indiscrim-
inately augment the entire observation [21] or focus solely
on dynamic foregrounds without accounting for task rele-
vance [22]. To address these limitations, we propose EA-

GLE [23], an efficient training framework for generalizable
visuomotor policies. EAGLE employs a self-supervised re-
construction module to learn control-related masks, which
are then used to guide control-aware data augmentation by
applying strong perturbations to task-irrelevant regions. Ex-
periments on both simulated locomotion and real-world ma-
nipulation tasks show that EAGLE achieves robust perfor-
mance against unseen backgrounds and distractors.

4. Human-Copilot Reinforcement Learning

Although the long-term vision of artificial general intelli-
gence is to reduce reliance on human intervention and scale
capabilities purely with computation, human involvement re-
mains essential for deploying RL-based visuomotor policies
in the real world, both to ensure safety and to improve learn-
ing efficiency. Teleoperation platforms allow humans to col-
lect demonstrations by directly controlling robots. However,
existing teleoperation systems—such as VR setups [24], ex-
oskeletons [25], and motion-capture technologies [26]—are
primarily designed for unilateral control. In these systems,
operators can issue commands but lack real-time feedback,
limiting their effectiveness when robots require timely hu-
man intervention during autonomous tasks. To address this
limitation, we developed HACTS (Human-As-Copilot Tele-
operation System), a low-cost solution that enables bilateral,
real-time joint synchronization between a robot arm and tele-
operation hardware. HACTS is built using only 3D-printed
components and off-the-shelf motors, making it both afford-
able and scalable. Building on this platform, we further
propose RLPD-HACTS [27], an online reinforcement learn-
ing algorithm that integrates both offline demonstrations and
online corrective feedback collected through HACTS. RLPD-
HACTS employs a value-based approach to efficiently lever-
age these two data sources. We validated RLPD-HACTS
on real-world manipulation tasks using a single-arm UR5
robot. With only 45 minutes of online training, task success
improved from 50% to 80%, while average episode length
decreased from 32 to 19 steps compared to offline imitation
alone. These results highlight the effectiveness of HACTS
in collecting high-quality data and demonstrate the necessity
of online RL finetuning for robust visuomotor policies.

5. Conclusion and Future Research

This research advances the efficient training and generaliza-
tion of visuomotor policies by developing methods for in-
formative reward generation, control-related representation
learning, and human-copilot online learning. We demon-
strate that self-supervised approaches to reward generation
and representation learning, grounded in agents’ own expe-
rience, improve both training efficiency and generalization.
Furthermore, we show that in complex real-world tasks,
human-copilot reinforcement learning is essential for en-
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hancing success rates through online finetuning. Looking
ahead, we aim to extend real-world RL to distributed data
collection across heterogeneous robot platforms and diverse
manipulation tasks. We will also pursue more scalable RL
algorithms that rely primarily on autonomous trial-and-error,
thereby reducing the need for human assistance.
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